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Abstract: Target detection and classification is an important application of hyperspectral imaging1

in remote sensing. A wide range of algorithms for target detection in hyperspectral images have2

been developed in the last few decades. Given the nature of hyperspectral images, they exhibit large3

quantities of redundant information and are therefore compressible. Dimensionality reduction is an4

effective means of both compressing and denoising data. Although spectral dimensionality reduction5

is prevalent in hyperspectral target detection applications, the spatial redundancy of a scene is rarely6

exploited. By applying simple spatial masking techniques as a preprocessing step to disregard pixels7

of definite disinterest, the subsequent spectral dimensionality reduction process is simpler, less costly8

and more informative. This paper proposes a processing pipeline to compress hyperspectral images9

both spatially and spectrally before applying target detection algorithms to the resultant scene. The10

combination of several different spectral dimensionality reduction methods and target detection11

algorithms, within the proposed pipeline, are evaluated. We find that the Adaptive Cosine Estimator12

produces an improved F1 score and Mathews Correlation Coefficient when compared to unprocessed13

data. We also show that by using the proposed pipeline the data can be compressed by over 90% and14

target detection performance is maintained.15

Keywords: Hyperspectral image processing, Dimensionality reduction, Feature extraction, Target16

detection17

1. Introduction18

Remote sensing from aerial and satellite platforms has become increasingly prevalent and is an19

important source of information in areas of research including disaster relief [1], determining land20

usage [2] and assessing vegetation health [3]. Remote sensing platforms are also often deployed in21

military and security applications such as change detection [4,5], target tracking [6] and classification.22

Target Detection (TD) from airborne imagery is a major challenge and active area of research within23

the disciplines of signal and image processing [7–9]. There have been a wide range of TD algorithms24

of varying complexities developed over the last few decades [10], ranging from mathematical models25

to those based on more intuitive approaches such as angles or distances. The most notable difficulties26

in aerial TD are discussed in [11] and include sensor noise effects, atmospheric attenuation and27

subsequent correction which can both lead to variabilities in target signature.28

Depending on the system, remote sensing data can consist of high resolution RGB colour data,29

radar, multispectral or hyperspectral images. The latter, while providing a great deal of useful30

information, often at wavelengths beyond the range of human vision, introduces a vast quantity of31

data which must be handled and processed. Dimensionality Reduction (DR) techniques offer methods32
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of compressing and remapping this high dimensionality data into a reduced, and sometimes more33

informative, uncorrelated subspace. As hyperspectral images contain high levels of redundancy they34

are easily compressed using sparsity-based approaches [12] or by applying DR methods. Coupling35

spectral DR with TD in order to improve detection and classification rates has been covered widely36

in the literature [11,13–19] and has been shown to improve the performance of TD and classification37

algorithms.38

In TD applications, often the targets are sparsely positioned in an imaged scene, therefore39

large amounts of spatial redundancy are often exhibited. This spatial redundancy, like the spectral40

redundancy also present in hyperspectral images, can be exploited in order to attain increased41

performance and efficiency. In [18,19], we investigated using the Normalised Difference Vegetation42

Index (NDVI) as a spatial mask on the detected image in order to constrain the region of interest in the43

scene. In this paper however, the spatial DR is applied prior to the calculation of the dimensionality44

reduced image in order to refine the subspace in which any TD is performed. NDVI and its variants are45

most often used in remote sensing applications to quickly and effectively assess vegetation health [3].46

Other similar indices are used to detect water/snow in an image or for assessing how built upon an47

area is. However, such indices could be used to provide a measure of how informative a pixel may be48

or how likely it is to hold a target signature. Pixels are categorised as informative or non-informative49

with the non-informative pixels being discarded. By removing such pixels, the DR calculation can be50

simplified by reducing the number of samples, whilst also simplifying and suppressing the background51

class. As TD algorithms can be represented as a binary classification, improving the separation between52

target and background classes consequently improves TD performance [8]. While various information53

indices are commonly used in remote sensing tasks, to the best of the authors’ knowledge, they have54

never been used to perform spatial DR or coupled with spectral DR in this way with the aim of55

improving hyperspectral TD applications.56

In this paper, we investigate the use of coupled spatial and spectral DR on hyperspectral TD57

applications. With this approach, we aim to decrease both the spatial and spectral redundancy58

exhibited in hyperspectral images, improving the efficiency and performance of various benchmark59

TD algorithms. The proposed method was tested on two hyperspectral datasets containing multiple60

targets in varied scenes.61

2. Materials and Method62

In this section, we first introduce the notation used in this paper as well as the relevant background63

information on each of the datasets and methods used. Secondly the various spectral DR methods64

used are introduced followed by the spatial DR method created for purpose of TD. Finally the various65

detection algorithms are described.66

2.1. Notation67

Hyperspectral images can most easily be represented as 3-dimensional datacubes, with two68

spatial dimensions and a third spectral dimension. Any hyperspectral image X can be represented as69

L individual greyscale images each exposed at a particular wavelength or spectral band λl , X l : l ∈70

{1, 2, ..., L}, where L represents the total number of spectral bands. Alternatively an image, X, can be71

thought of as N individual pixels each comprised of an L-dimensional vectors as seen in Equation (1):72

X3D =


x1,1 x2,1 · · · xi,1
x1,2 x2,2 · · · xi,2

...
...

. . .
...

x1,j x2,j · · · xi,j

 (1)

where i and j represent the number of columns and rows in the hyperspectral datacube X3D respectively.73

Generally when applying hyperspectral image processing algorithms to images, it is desirable for the74
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image to be in a 2-dimensional matrix form, X. This is shown in Equation (2), where each column75

consists of a single pixel, xi : i ∈ {1, 2, ..., N}, represented by an L-dimensional vector, as seen in76

Equation (3).77

X2D =
[

x1, x2, x3, · · · xi, · · · xN

]
(2)

x =
[

xλ1 ; xλ2 ; · · · xλL

]
(3)

The vector in Equation 3 represents a single hyperspectral pixel, or a single spectral measurement.78

2.2. Image Acquisition79

Images from two sources have been used to validate the techniques described here. The first80

dataset “OP7”, provided by BAE Systems, consists of three images acquired on the 18th May 201481

from an aerial platform flying at an altitude of approximately 0.78km. The platform used a Visible and82

Near-InfraRed (VNIR) hyperspectral sensor with a spectral range of roughly 400 - 1000nm.83

The second set of images were supplied by the UK Defence Science and Technology Laboratory84

(DSTL) as part of the University Defense and Research Collaboration (UDRC) from the Selene trial.85

Part of this trial collected airborne hyperspectral imagery of large numbers of spectrally varied targets86

across a two week period between the 4th and 15th of August 2014 at an altitude between 0.9 and87

1.05km. A common region from a selection of seven images captured over this period was used so as to88

exhibit varied targets under different environmental conditions. The camera used was also in the VNIR89

range with a similar spectral range of roughly 400nm to 1000nm with fewer spectral measurements90

but a much higher spatial resolution than the OP7 dataset.91

Sample false-colour images from each of the datasets can be seen in Figure 1 along with cropped92

portions of the target area indicated by a red box.93

(a) (b) (c) (d)
Figure 1. False colour images from the datasets used in this work. a) OP7 image. b) Target Region of a).
c) UDRC Selene image. d) Target Region of c).

2.3. Spectral Dimensionality Reduction Techniques94

Due to the high correlation between successive bands in hyperspectral images, compression and95

DR techniques can be readily applied. In this section we review four of the most common techniques96

which we have included in this analysis.97

2.3.1. Principal Component Analysis98

Principal Component Analysis (PCA) [20] is a classical method of DR. It seeks to remap highly99

correlated data into an uncorrelated space using a set of optimal orthogonal basis vectors, or Principal100

Components (PC), calculated from the input data. There are multiple ways of achieving this through101

both iterative and non-iterative algorithms, we have included two in this analysis, Eigenvalue102

Decomposition (EVD) and Non-linear Iterative Partial Least Squares (NIPALS). The EVD is a common103



Version April 12, 2021 submitted to Remote Sens. 4 of 27

method for performing PCA and consists of the matrix decomposition Σ = UΛUT , where the104

matrix Λ is a diagonal matrix containing the eigenvalues of Σ, i.e., Λ = diag{λ1, λ2, ..., λL} and105

the matrix U contains the related eigenvectors [u1, u2, ..., uL]. The eigenvalues in Λ are ordered such106

that λ1 > λ2 > ... > λL, hence the first K largest eigenvalues correspond to the first K eigenvectors.107

The first K eigenvectors, or PCs, can be used as the a set of basis vectors to transform the original data108

into an uncorrelated K-dimensional subspace, where K < L, which represents the most significant109

information contained in the data.110

In some cases, such as those where the desired number of retained components is known, it111

is unnecessary and therefore preferable to avoid calculating every PC as is required in an EVD. In112

these cases iterative techniques can be used to calculate each successive PC in turn until the required113

number, K, has been reached. The NIPALS algorithm can be used to achieve this and consists of the114

decomposition X = TPT , where X is some mean-centred matrix and the columns of T are the scores115

and the columns of P are the loadings. P forms an optimal transform matrix which can be used in116

an identical manner to the matrix of eigenvectors from an EVD in transforming input data into an117

dimensionality reduced subspace. An overview of the NIPALS algorithm can be found in [21].118

In testing, both the EVD and NIPALS algorithms produced PCs with identical magnitudes but119

some which exhibited opposite polarity as orthogonality can take one of two directions. The EVD has120

no need to converge and is therefore faster while producing minimal error. With this in mind, only the121

EVD was used to perform PCA-based DR.122

2.3.2. Maximum Noise Fraction123

The Maximum Noise Fraction (MNF) [22] transform is similar in operation to PCA but also124

accounts for the noise present in input data [23]. Rather than ordering the PCs of an input image, X,125

by their variance, as in PCA, they are instead sorted by their estimated Signal-to-Noise Ratio (SNR). In126

MNF, it can be assumed that the covariance of the data, Σ, is a sum of the covariance of the signal,127

Σs, and the covariance of noise, Σn, i.e., Σ = Σs + Σn. The MNF transform seeks to maximise the128

calculated eigenvalues with respect to the estimated SNR and can be interpreted as two separate PCAs129

computed in turn, the first to noise whiten the data, and the second to calculate the PCs. The complete130

MNF algorithm is described in [22].131

2.3.3. Folded Principal Component Analysis132

With both PCA and MNF, as well as many other PCA-like methods, it is necessary to compute133

the full covariance matrix Σ. This covariance matrix is of size L × L where L is equal to the134

number of spectral bands in an image. Therefore, for images with high spectral resolution it can135

be computationally expensive and time-consuming to compute. In order to circumvent this challenge,136

Folded Principal Component Analysis (FPCA) [24] seeks to reduce the size of the covariance matrix137

and also incorporate the correlation within spectra into the calculation. In order to perform FPCA,138

each of the N mean-centred spectral vectors, x̄, are folded into an H×W matrix, A, where H×W = L139

for some positive integers H and W. A partial covariance matrix can be calculated as Σ = AT A and140

using each of these N partial covariance matrices the full covariance matrix, ΣFPCA, can be calculated141

as ΣFPCA = 1
N ∑N

i=1 AT
i Ai. Images can be projected into the FPCA domain by performing the EVD,142

of ΣFPCA and using the resultant eigenvectors to project the input data into the PC space. Auxiliary143

target spectra can then be folded using the same H and W and projected using the eigenvectors of144

ΣFPCA, before being unfolded again to be processed in the FPCA domain.145

2.3.4. Independent Component Analysis146

Independent Component Analysis (ICA) is a common method for performing Blind Source147

Separation (BSS) used in DR. Unlike PCA, MNF or FPCA, ICA seeks to separate an ensemble of148

mixed signals into a set of finite distinct sources or Independent Components (IC). This is achieved by149

maximising the statistical independence of the calculated components [25]. As hyperspectral images150
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are made up of a weighted sum of a set of finite pure spectra, or endmembers, it is possible to perform151

ICA to separate the mixed spectra into pure spectral endmembers. There are multiple algorithms used152

to calculate the ICs of a set of data, two of the most well used are the FastICA [26] algorithm and153

the Joint Approximation Diagonalization of Eigen-matrices (JADE) algorithm [27]. In this paper the154

FastICA algorithm is used instead of the JADE algorithm as it reached convergence both faster and155

more reliably. In order to perform ICA based DR, the required number of ICs to represent the data156

needs to be calculated. This is achieved by using the notion of Virtual Dimensionality (VD) [28] which157

estimates the number of spectrally distinct sources in the image. Using the method from [29], ICA-DR158

can be achieved with K ICs.159

PCA and MNF are both classified as second order statistics-based transforms which can be160

insufficient in some applications [29]. ICA preserves higher order moments, such as skewness and161

kurtosis, which can aid in applications which require characterisation of subtle differences in signature162

such as classification or detection of small/rare targets. While it is possible that second-order statistics163

may be insufficient in preserving such characterising information it has not been the case with this164

application. Although it performs favourably when compared to other ICA algorithms such as JADE,165

FastICA is much slower than the other, non-iterative, methods for DR listed here. This is due to the166

need for multiple iterations to reach a convergence and is therefore another important consideration in167

its choice in any practical application.168

2.4. Spatial Dimensionality Reduction using Vegetation Indices169

As well as exploiting the spectral redundancy exhibited in hyperspectral images the spatial170

redundancy can also be utilised for TD through compression or by creating new features. By171

investigating the spectral properties of the scene, spatial areas of interest can be selected and areas172

of non-interest can be discarded from further processing, often saving on large computational costs.173

Vegetation Indices (VI) such as NDVI and its variants are of particular interest in TD applications as174

they offer simple and effective methods to discriminate between vegetative and non-vegetative pixels.175

Three NDVI variants were selected and tested in discriminating between the desired background of176

vegetation and the foreground of synthetic materials to which the target objects of interest belong.177

Each of the methods used in this work are listed in Table 1.178

Table 1. Vegetation indices used for spatial DR

Index Acronym Equation Reference
Normalised Difference

Vegetation Index
NDVI

λNIR − λRed
λNIR + λRed

Rouse et al. [30]

Normalised Difference Vegetation
Index (red-edge)

NDVIre
λre − λRed
λre + λRed

Hansen & Schjoerring [31]
Ettehadi et al. [2]

Red-Edge Normalised
Difference Vegetation Index

RENDVI
λ750 − λ705
λ750 + λ705

Gitelson & Merzlyak [32]
Sims & Gamon [33]

2.5. Target Detection Algorithms179

In this paper, five common classical methods for TD and Anomaly Detection (AD) are investigated180

for use in combination with spatial and spectral DR. Four of these five algorithms, the Adaptive181

Cosine Estimator (ACE)[34], Constrained Energy Minimisation (CEM)[13], the Spectral Angle Mapper182

(SAM)[35], Spectral Information Divergence (SID)[36], and the Reed-Xiaoli Detector (RXD)[37]. Each183

method, with the exception of the latter are TD algorithms and, as such, they require a priori information184

about the targets to be detected in the form of a reference or ground truth spectra. The final method185

however, the RXD, does not require prior information about a target and finds outlying or anomalous186

pixels within the image and is cited as the benchmark AD algorithm [11]. Whilst other TD algorithms187
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such as Orthogonal Subspace Projection (OSP) [38,39] are often used to good effect [40–42], such188

methods require prior knowledge of the background which may not be fully known and as a result189

hinder the performance in a TD application hence they are left out of this analysis. ACE in particular190

has been shown to achieve favourable results in similar comparisons with other TD algorithms191

[11,14,17,43].192

2.6. Performance Measures193

In order to asses the performance of each of the TD algorithms a number of measures are used194

in this paper. Each of the various TD and AD algorithms used return a probability or confidence195

measure as to whether each pixel contains a target. By varying the threshold above which a pixel is196

classified as a target, the various behaviours and performance of a TD algorithm can be assessed. Both197

Receiver Operator Characteristic (ROC) curves [44] and Precision-Recall (PR) curves [45,46] are useful198

measures in determining an optimal operational threshold in order to maintain an acceptable False199

Alarm Rate (FAR). The Area Under the Curve (AUC) is a useful measure for comparing the ROC and200

PR behaviours of various algorithms. The ROC curve can be created by plotting the Probability of201

Detection (Pd), against the Probability of False Alarm (Pfa), at a series of thresholds.202

Although ROC curves are a simple and effective way of rapidly visualising the performance of a203

classifier, it has been shown that ROC analysis can be flawed for unbalanced classes, as is the case for204

TD applications. In [45] it is shown that PR curves are more informative for unbalanced classes as they205

correctly evaluate the fraction of True Positive (TP) detections amongst the total number of positive206

predictions, or the precision of the classifier. Precision can be calculated using the number of TP and207

False Positive (FP) detections where precision = TP/(TP + FP). Recall is calculated using the number208

of False Negative (FN) detections where recall = TP/(TP + FN). Recall is the fraction of TP detections209

amongst the total number of positive examples. In the case of TD applications the number of positive210

examples is the total number of target pixels present in an image and PR curves can be obtained by211

plotting the precision of a classifier against its recall at a series of thresholds.212

Along with these graph-based methods, four other methods of assessing each of the TD algorithms213

were used. Three measures commonly used in assessing binary classifier performance, the F1 score214

[46], Matthew’s Correlation Coefficient (MCC) [47] and balanced accuracy [48] were used. As TD215

algorithms can be represented as a binary classification between a positive target class and a negative216

background class, these measures are applied to assess how each algorithm performs. The final metric217

used in this work is the visibility measure [14]. Visibility is an indication of how distinct a target is218

from its background. This is useful in assessing how the detection can be affected by applying DR to219

input image data.220

2.7. Proposed Methodology221

In this paper, we are proposing a pipeline to improve TD in hyperspectral images by combining222

both spatial and spectral DR methods. This is achieved by performing a spatial DR on an input image,223

removing any vegetative, and therefore, non-target pixels, before projecting the subset of the image224

into a subspace using more traditional spectral dimensionality methods. Any relevant ground truth225

target spectra can also be projected into the same subspace using the forward transform of each DR226

method. The TD can be performed in the dimensionality reduced subspace. This pipeline is shown in227

Figure 2.228

In previous work, [18,19], both NDVI and PCA were combined to improve the performance of229

a hyperspectral Hit-or-Miss Transform (HMT) for use as a TD algorithm. By reducing the spatial230

and spectral redundancy the computational overhead of the proposed algorithm was reduced. NDVI231

was used to mask the already dimensionality reduced data. However, this meant that the NDVI232

had no influence over the performance of the detection. When it is already known that the target233

is non-vegetative, the application of Normalised Difference Vegetation Index (red-edge) (NDVIre)234

masking prior to the use of spectral DR improves the performance of TD algorithms because a235
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Figure 2. Spatio-spectral dimensionality reduction pipeline for target detection.

much more informative subset of pixels is exploited. Rather than using the spectral information of236

vegetation in the DR calculation, which can skew the resultant basis vectors away from representing237

desirable signatures, it is instead overlooked. The DR is targeted towards representing potentially238

more informative pixels. By suppressing the vegetative part of the background class, an improved239

separation between the target and remaining background can be achieved in the DR subspace. The240

aim is, that by reducing the number of samples in this way, the calculation of the dimensionality241

reduced data is not only simplified but also more useful information is retained in potentially fewer242

components.243

3. Experimental Results244

In this section we will first investigate the achievable compression rates when combining both245

spectral DR and NDVIre-based spatial DR. We then select the optimal detection algorithm for use with246

the proposed spatio-spectral DR pipeline shown in Figure 2. Then, we present a subset of the results247

gathered using both the OP7 dataset and the UDRC Selene Trial data. Finally, we investigate the effects248

of the various spatial and spectral DR schemes combined with the chosen TD algorithm. Each of the249

spectral DR methods, PCA, MNF, FPCA and ICA, are tested with K = 20 components retained and250

“Raw” refers to the full dimensionality image where L = 100 for the OP7 data and L = 80 for the Selene251

trial images.252

3.1. Selection of the optimal Vegetation Index for Spatial Dimensionality Reduction253

In order to assess which VI gave the best separation between vegetative and non-vegetative pixels,254

the ground truth spectra of multiple green targets from the Selene dataset as well as the average spectra255

of a patch of vegetation were investigated. Figure 3 shows the test image used as well as the results of256

each of the three VIs.257

All three of the VIs are able to identify a good separation between vegetation and most other258

non-vegetative background pixels. However some of the green targets present in the scene, despite259

exhibiting distinctly non-vegetative spectra, can produce a ratio similar to that of the surrounding260

grass, this is most apparent when using the basic NDVI. The regions investigated are indicated by the261

blue and orange elements in Figure 3, matching the colour of the plotted spectral signatures in Figure262

4. Figure 4 shows the target spectra, background spectrum, and VI bands used to calculate the ratio of263

each VI result respectively.264

Two of the targets from Figure 3a, green perspex (circled in blue) and green ceramic (circled in265

orange) were investigated for separation from the background when using VI-based spatial DR. Each266
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(a) (b) (c) (d)
Figure 3. Optimal VI experiments a) UDRC Test Image. b) NDVI ratio. c) NDVIre ratio. d) RENDVI
ratio. (In b) to d) warmer colours indicate higher levels of vegetation and colder colours indicate
non-vegetation.)
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Figure 4. VI ratio of each of the three test spectra a) NDVI ratio and band locations. b) NDVIre ratio
and band locations. c) RENDVI ratio and band locations.

of the three VIs investigated produce a ratio between the intensity of a pixel at two bands, the two267

targets produced VI values shown in Table 2268

Table 2. Vegetation index ratios obtained for background and targets

Vegetation Index Green Perspex Ratio Green Carpet Ratio Background Ratio
NDVI 0.48 0.14 0.53

NDVIre 0.09 0.13 0.39
RENDVI 0.10 0.06 0.28

From Figures 3b-3d, Figure 4 and Table 2, it is possible to see that NDVI and Red Edge Normalised269

Difference Vegetation Index (RENDVI) have lower separability between the “green perspex” target270

and the background. In fact, it can be observed that the green perspex target, pinpointed by the blue271

arrows in Figures 3b-3d, is near indistinguishable from the background in Figure 3b with only six of272

the seven targets having a low enough NDVI value to be reliably distinguished from the background.273

Despite having a distinct spectral profile, as shown in Figure 4a, the green perspex has an almost274

identical NDVI value to the background (0.48 vs 0.53) indicating the ratio between the two NDVI275

bands is nearly the same. By altering the Near-InfraRed (NIR) band to be placed in the red-edge276

portion of the spectrum, as is the case when using NDVIre, a much greater separation is achieved277

(0.09 vs 0.39). This is due to the red-edge phenomenon, when the intensity of the background spectra278

rises sharply, reflecting NIR light. RENDVI, whilst successfully segmenting all seven targets in this279

example, creates a lower contrast between background and target when compared with NDVIre. As280

NDVIre provides the best separation between the most difficult targets and the background it is used281

to implement spatial DR in this paper.282
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3.2. Combining spatial and spectral DR for hyperspectral compression283

Here we briefly discuss the effects on image size and compression when combining spatial and284

spectral DR techniques. NDVIre is used as a spatial mask, selecting pixels that are relevant and can be285

used in subsequent spectral DR and TD processes. By masking certain pixels they can be discarded286

from further processing, reducing the sample size. Then, by performing spectral DR, retaining K287

components from L spectral bands the sample size is reduced further. By combining the remaining288

spatial and spectral components, a compressed representation of the relevant data is retained for289

further processing. Table 3 details the size of each of the images used in this paper, as well as their290

compressed spatial and spectral sizes along with the percentage of the original data retained after291

compression.292

Table 3. Achieved compression for combined spatial and spectral DR

Image
# Samples

Full
# Samples

NDVIre
L K

Spatial
Comp.(%)

Spectral
Comp.(%)

Total
Comp. (%)

Average
Comp. (%)

OP7_1 160000 3504 100 20 2.19 20 0.44
0.34OP7_2 160000 2500 100 20 1.56 20 0.31

OP7_3 160000 2232 100 20 1.40 20 0.28
IM_140804 3210191 649435 80 20 20.23 25 5.06

4.61

IM_140806 3839976 578674 80 20 15.07 25 3.77
IM_140807 3415052 689245 80 20 20.18 25 5.05
IM_140808 3015944 543569 80 20 18.02 25 4.51
IM_140812 4360159 610172 80 20 13.99 25 3.50
IM_140813 3301404 807262 80 20 24.45 25 6.11
IM_140815 3640769 626776 80 20 17.22 25 4.30

The OP7 dataset images are first able to be compressed to 1.72% of their original size on average as293

NDVIre selects a small proportion of the total pixels to process further. By retaining K = 20 components294

in the subsequent spectral DR stage, this is reduced further to an average of 0.34% of their original295

size. The images in the Selene trial have a much higher spatial resolution and a larger sample is296

retained after using the NDVIre spatial mask as a large proportion of the pixels represent non-target297

and non-vegetative materials, as shown in Figure 1. The pixels retained after NDVIre represent an298

average of 18.45% of the original image and applying spectral DR, with K = 25, reduces this to 4.61%299

on average.300

3.3. Comparison of the TD Algorithms used301

Each of the detection algorithms used were individually tested for their suitability when combined302

with the spatial and spectral DR schemes selected. In order to validate which algorithm performed303

optimally, the proposed method was applied to a subset of the Selene data. First an ROC analysis was304

performed with examples of ROC curves for each combination of TD and DR algorithms are shown in305

Figure 5 for the full spatial scene and in Figure 6 when combined with NDVIre. Figures 5 and 6 show306

the upper left quadrant of the ROC curves in order to highlight the differences between each of the307

methods used.308

As previously stated, ROC analysis, in isolation, is insufficient for comparing unbalanced binary309

classifiers [45]. However, it is interesting to note that the disparity between the ROC curves from each310

of the TD algorithm outputs. In Figure 5 each of the algorithms used have near ideal ROC curves311

regardless of which spectral DR scheme is used when working on the full spatial scene. However312

when spatial DR is employed, only the ACE and CEM algorithms remain near ideal as seen in Figure 6.313

The AUC of the ROC curves increase for each spectral DR scheme when combined with NDVIre-based314

spatial DR and the ACE algorithm, as shown in Figure 6a. By simplifying the background, and315

therefore improving the covariance estimate, the ACE algorithm can achieve better separation between316
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Figure 5. ROC Curves for each TD and spectral DR scheme pairing on the full scene. a) ACE. b) CEM.
c) SAM. d) SID. e) RXD.

the known target and the estimated background. Similarly, by suppressing the background, the FIR317

filter weight estimation that is necessary for the CEM algorithm is simplified. This is reflected in the318

increased AUC values of the ROC curve when using CEM with NDVIre-based spatial DR, as shown in319

Figure 6b.320
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Figure 6. ROC Curves for each TD and spectral DR scheme pairing in combination with spatial DR. a)
ACE. b) CEM. c) SAM. d) SID. e) RXD.

As well as ROC curves, PR curves were generated for each of the combinations of TD and DR321

algorithms with and without the NDVIre spatial DR. The PR curves of each of the TD algorithms when322

considering both the full spatial scene and with the application of NDVIre-based spatial DR are shown323

in Figure 7.324
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Figure 7. PR Curves for each TD and spectral DR scheme pairing in combination with spatial DR. a)
ACE. b) CEM. c) SAM. d) SID. e) RXD.

Table 4. Comparison between the AUC of the PR curves using the full and spatial DR images

PR Raw PCA MNF FPCA ICA
AUC Full NDVIre Full NDVIre Full NDVIre Full NDVIre Full NDVIre
ACE 0.649 0.7556 0.6038 0.7505 0.6229 0.7393 0.56 0.7186 0.5999 0.7507
CEM 0.6207 0.6852 0.6208 0.7673 0.6033 0.6633 0.6124 0.6669 0.6195 0.6849
SAM 0.577 0.6723 0.5127 0.4443 0.4938 0.0993 0.528 0.6194 0.6006 0.7507
SID 0.5315 0.6112 0.131 0.3582 0.0187 0.0102 0.3314 0.2625 0.1809 0.5871
RXD 0.5153 0.5086 0.0055 0.0175 0.5358 0.6604 0.5445 0.5816 0.5224 0.5049

Investigating the PR curves shown in Figure 7 and the corresponding AUC values in Table 4 we325

see that using ACE, CEM and SAM generally all yield high AUC values for each of the spectral DR326

schemes used. When NDVIre-based spatial DR is used in combined with the spectral DR the AUC327

in almost every case, including on the raw data where no spectral DR is used. SID, when used on328

the full dimensionality data, provides an average AUC which is once again improved when using329

NDVIre-based spatial DR. The RXD performs well when using the full data and each of the spectral DR330

algorithms with the exception of PCA where it fails to discriminate target materials. This is due to the331

fact that, mathematically, PCA is the inverse operation of the RXD [49]. PCA exploits the redundancy332

of hyperspectral images by only retaining the PCs corresponding to the largest eigenvalues whereas333

the RXD works by investigating the anomalous data attributed to smaller eigenvalues which have334

been discarded.335

Both the ROC and PR analysis were performed on a per-target basis. The results shown in Figures336

5-7 and Table 4 are from the detection of a single target however they are generally representative337

of the performance over every target present in the scene. Along with the ROC and PR curves, the338

other performance measures detailed in Section 2.6 were calculated for each of the targets in the scene.339

These measures were then averaged in order to obtain an overview of each TD algorithm’s general340

performance, the results of which can be seen below in Figure 8.341
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Figure 8. Average performance of each TD and DR algorithm combination when used on the full scene
vs. when combined with spatial DR.

Similar to the results drawn from Figures 2 and 5, each of the TD algorithms perform well when342

considering the AUC of the ROC curves. ACE and CEM give the highest AUC of the PR curves with343

ACE, CEM, and SID each performing better when combined with spatial DR. Generally using the344

spatial DR reduces the visibility with the exception of CEM and the RXD where it slightly increases.345

ACE gives the highest visibility when considering both the full scene and when using spatial DR346

indicating it is the best at separating the background from the target of the algorithms investigated.347

ACE and SID display the best precision, with both methods improving when using spatial DR. ACE348

also displays the highest balanced accuracy, F1 score and MCC of each of the detectors tested. For349

these reasons, the remaining results in this paper are generated using the ACE algorithm solely. It is350

interesting to note that, as well as reducing the sample size for increased efficiency, as seen in Figure 8,351

for each of the detection algorithms, the performance after the application of spatial DR is generally as352

good or an improvement over using the full scene.353

3.4. Results on the OP7 Dataset354

The first of two datasets used in this paper was provided by BAE System. It consists of three355

images of a forest scene each portraying a common target area from overlapping views. The target area356

contains three calibration panels, one grey, one black and one white, which were used as the targets357

of interest. Figure 9a shows a false colour representation of one of the images with all three targets358

present in the scene. Figure 9c shows same the image masked using the NDVIre method detailed in359

Section 2.4. Figures 9b and 9d are enlarged views of the target areas of Figures 9a and 9c respectively.360

(a) (b) (c) (d)
Figure 9. Example of the OP7 Dataset. a) False colour image of the target area. b) Enlarged version of
a).c) Retained pixels following the NDVIre spatial masking. d) Enlarged version of c).

Of the two datasets, OP7 is simpler as it contains fewer distinct materials and objects in the361

scene compared to the images from the Selene Trial dataset. The OP7 images also have a lower362
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Figure 10. Performance measures using the ACE TD algorithm and each DR scheme with a varying
number of retained components on the OP7 dataset.

spatial resolution when compared to the Selene Trial data, with a Ground Sample Distance (GSD) of363

approximately 1 metre. As a result roughly nine pixels per target contain pure spectra.364

In order to assess how each TD algorithm’s behaviour varied with the number of components365

retained using each DR scheme, the F1 score, MCC, balanced accuracy and visibility were calculated at366

various values for K between K = 10 and K = L, where L = 100 for the OP7 data as shown in Figure367

10. It must be noted that, when using FPCA, the dip in performance in each measure is a consequence368

of an implementation limitations which result in the creation of a singular matrix. This restricts the369

choice of the number of retained components and is discussed further in Section 4.370

As seen in Figure 10, both balanced accuracy and visibility are largely invariant to the number of371

components, K, retained. Although interestingly, at lower values of K, the visibility using each spectral372

DR methods is greater than that of the raw data. Conversely, the F1 score and MCC both vary as the373

number of components increase to be equal to the original spectral dimensionality of the data, both374

with and without the application of spatial DR. This is to be expected, in the case where K = L the data375

is functionally identical, although it has been remapped, and no information has been lost in the DR376

operation. By using spatial DR prior to spectral DR, both the F1 score and MCC are increased above377

what is achieved using the raw full dimensionality data without spatial DR.378
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When comparing TD performance on the full spatial dimensionality images with that of the379

NDVIre masked images, both with and without the application of spectral DR, the F1 score and MCC380

both increase. However when spatial DR is applied, the average F1 score and MCC are considerably381

higher. The removal of the vegetative background discards highly disparate observations and simplifies382

the problem of separating background from target. This increases the precision of the detection as seen383

in Tables 5 and 6. By reducing the complexity of the background, the targets, although more similar to384

the remaining background, can be separated in the subspace more easily.385

The MCC, in comparison to the F1 score, is slightly higher in both spatial DR cases as it takes386

into account the correct identification of the true negative class. The balanced accuracy drops slightly387

wherever NDVIre is applied. As the balanced accuracy is the average of the True Positive Rate (TPR)388

and True Negative Rate (TNR), the decrease in the size of the True Negative (TN) class, without a389

corresponding proportional decrease in FP, results in a lower balanced accuracy. Despite the increase390

in False Positive Rate (FPR) when using NDVIre, the absolute number of FP detections decreases. It can391

also be seen in Figure 10 that, by removing the easily separated vegetative background using NDVIre,392

the visibility of the targets decreases. This occurs because the materials which remain are on average393

more similar to the targets.394

Further comparisons were made by retaining 20 components from each of the spectral DR methods395

as this provided a good balance of performance and compression. As shown in Figure 10, K = 20396

components also gave clear improvements over the raw, full dimensionality, scene when combined397

with spatial DR. The improvement in detection when using spatial DR can be seen in Figure 11 where398

there is less confusion in the detection map where NDVIre is applied, Figure 11b. The target is the399

brightest object in the scene in each case, indicating good separability from the background.400
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Figure 11. Detection statistics of the ACE algorithm on the full dimensionality data where yellow
indicates a response of 1 and blue represents a response of 0. a) Without spatial DR. b) Enlarged version
of a). c) With NDVIre. d) Enlarged version of c).

In order to quantify this improvement, the ROC and PR curves for both the full and spatial401

dimensionality reduced images are shown in Figure 12 for each spectral DR method where K = 20.402

The ROC curves in Figures 12a and 12b are of the ACE detection statistics on the full scene and403

NDVIre masked scene respectively. The AUC of the ROC curves alone is not significant as, regardless404

of spatial and spectral DR used, it remains nearly identical. The AUC of the PR curves (Figures 12c405

and 12d) when using the raw uncompressed data, PCA or MNF dimensionality reduced data increases406

when spatial DR is applied. However, when applying FPCA the AUC falls slightly and when using407

ICA the AUC of the PR curve decreases by 10%.408

The results from Figures 10-12 are all calculated from a single target in order to display an example409

of the performance achieved. The average results for each target are shown in Table 5 when considering410

the full scene and in Table 6 when spatial DR has been applied.411

In general, as shown in Tables 5 and 6, the AUC of the ROC curves are similar regardless of412

the spectral and spatial DR used. The AUC of the PR curves varies with the spectral DR used with413

each of the methods providing an average AUC. On average, employing spectral DR maintains the414

performance when considering the full spatial scene but when combined with spatial DR there is a415

slight decrease in the AUC of the PR curves. Applying employing NDVIre-based spatial DR improves416
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Figure 12. ROC and PR curves for detecting Target 1 (grey tile) in the OP7 dataset a) ROC curve using
the full spatial dimensionality data. b) ROC curve using spatial DR pre-processing. c) PR curve using
the full spatial dimensionality data. d) PR curve using spatial DR pre-processing.

Table 5. Average performance measures for each target in the OP7 dataset without spatial DR applied
using the ACE algorithm.

ACE-Full
K = 20 DR AUC ROC AUC PR Visibility Precision Recall Bacc F1 MCC

Grey Tile

Raw 1.00 0.84 0.88 0.37 0.88 0.93 0.35 0.43
PCA 1.00 0.77 0.94 0.12 0.95 0.96 0.12 0.18
MNF 1.00 0.79 0.93 0.15 0.95 0.96 0.15 0.21
FPCA 1.00 0.80 0.92 0.17 0.94 0.96 0.17 0.23
ICA 1.00 0.78 0.93 0.16 0.95 0.96 0.16 0.23

Black Tile

Raw 1.00 0.06 0.60 0.09 0.62 0.80 0.06 0.11
PCA 1.00 0.10 0.68 0.05 0.72 0.84 0.05 0.09
MNF 1.00 0.15 0.70 0.09 0.75 0.85 0.07 0.12
FPCA 1.00 0.13 0.71 0.05 0.76 0.85 0.05 0.09
ICA 1.00 0.11 0.67 0.04 0.72 0.83 0.05 0.09

White Tile

Raw 1.00 0.74 0.79 0.57 0.79 0.89 0.53 0.59
PCA 1.00 0.67 0.93 0.22 0.94 0.96 0.28 0.37
MNF 1.00 0.68 0.85 0.39 0.86 0.92 0.41 0.47
FPCA 1.00 0.60 0.83 0.33 0.84 0.91 0.35 0.41
ICA 1.00 0.67 0.79 0.47 0.80 0.89 0.44 0.49

All Spectra

Raw 1.00 0.55 0.76 0.34 0.77 0.87 0.32 0.37
PCA 1.00 0.52 0.85 0.13 0.87 0.92 0.15 0.22
MNF 1.00 0.54 0.83 0.21 0.85 0.91 0.21 0.27
FPCA 1.00 0.51 0.82 0.18 0.85 0.91 0.19 0.25
ICA 1.00 0.52 0.80 0.22 0.82 0.89 0.22 0.27
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Table 6. Average performance measures for each target in the OP7 dataset with NDVIre-based spatial
DR applied using the ACE algorithm.

ACE-NDVIre
K = 20 DR AUC ROC AUC PR Visibility Precision Recall Bacc F1 MCC

Grey Tile

Raw 1.00 0.86 0.72 0.73 0.74 0.86 0.59 0.65
PCA 1.00 0.83 0.75 0.56 0.79 0.87 0.48 0.54
MNF 1.00 0.85 0.76 0.56 0.80 0.87 0.48 0.54
FPCA 1.00 0.84 0.81 0.54 0.84 0.90 0.51 0.57
ICA 1.00 0.75 0.73 0.52 0.77 0.86 0.43 0.50

Black Tile

Raw 0.98 0.37 0.52 0.40 0.57 0.76 0.25 0.33
PCA 0.94 0.08 0.48 0.06 0.56 0.74 0.09 0.14
MNF 0.96 0.09 0.46 0.07 0.54 0.73 0.09 0.14
FPCA 0.94 0.09 0.47 0.08 0.54 0.73 0.10 0.15
ICA 0.93 0.08 0.42 0.05 0.49 0.71 0.08 0.12

White Tile

Raw 0.97 0.66 0.57 0.83 0.58 0.78 0.58 0.63
PCA 0.95 0.61 0.59 0.78 0.60 0.79 0.59 0.63
MNF 0.95 0.62 0.61 0.74 0.62 0.80 0.58 0.62
FPCA 0.92 0.59 0.59 0.64 0.61 0.79 0.51 0.55
ICA 0.94 0.63 0.57 0.73 0.59 0.78 0.53 0.58

All Spectra

Raw 0.98 0.63 0.61 0.65 0.63 0.80 0.47 0.53
PCA 0.96 0.50 0.61 0.47 0.65 0.80 0.39 0.44
MNF 0.97 0.52 0.61 0.46 0.65 0.80 0.38 0.44
FPCA 0.96 0.50 0.62 0.42 0.66 0.81 0.37 0.43
ICA 0.96 0.49 0.57 0.43 0.62 0.78 0.35 0.40

the AUC when considering the full dimensionality data. The precision of the spatial DR coupled417

methods is increased in comparison to using the full spatial scene as certain false positives are removed418

either directly via the masking operation or indirectly by improving the spectral DR calculation. The419

recall drops slightly, however this may not be significant in TD applications as one pixel on target is420

sufficient for the identification and classification of an object of interest. Figure 10 shows a drop in the421

visibility and balanced accuracy measures when applying spatial DR which is which is consistent for422

each of the targets, as shown in Figure 13.423

The visibility drops significantly when using the spatial DR as the highly dissimilar vegetative424

background is removed making the average background and target spectra more similar. The balanced425

accuracy falls when using NDVIre as the TN class decreases without a corresponding drop in FP426

detections. The F1 score and MCC both increase when using NDVIre-based spatial DR when applied to427

the full dimensionality data as well as for each spectral DR scheme used. In nearly all of the measures428

tested, the full spectral dimensionality image with and without spatial DR performed the best of all429

methods on average with the application of spatial DR tending to improve the performance. Each430

of the spectral DR methods employed retained only 20 components of the original 100, reducing the431

computational complexity and cost of performing the TD while maintaining similar performance.432
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Figure 13. Comparison between the performance measures when combining spatial and spectral DR
on the OP7 dataset

433

3.5. Results on the UDRC Selene Dataset434

The second of the two datasets used in this paper was provided by DSTL. It consists of seven435

images of a different forest scene with a large concrete area with metal containers, vehicles and other436

objects captured over the course of two weeks in August 2014. Each image covers a different view of437

this common target area containing between five and seven calibration panels of various colours and438

materials with a GSD of roughly 0.3m.439

Figure 14c shows the image masked using the NDVIre method detailed in Section 2.4 with Figures440

14b and 14d providing an enlarged view of the target area from the Figures 14a and 14c respectively.441

(a) (b) (c) (d)
Figure 14. Example image from the UDRC Selene Dataset. a) False colour image of the target area. b)
Enlarged version of a).c) Retained pixels following the NDVIre spatial masking. d) Enlarged version of
c).

The same process of plotting the F1 score, MCC, balanced accuracy and visibility of a target from442

the OP7 data against the number of components, as in Figure 10, was applied to one of the target443

materials (green ceramic) present in the images from Figure 14. These graphs can be seen in Figure 15.444

As in Figure 10 using the OP7 data, the average F1 score and MCC both increase with the number445

of retained components until K = L. ICA and FPCA both perform well on average at K = 20 whereas446

both PCA and MNF require more components to represent the data fully. Applying the spatial DR to447

each of the spectral DR methods improves both their F1 score and MCC regardless of the number of448

components retained. Similar to the results from Section 3.4, the balanced accuracy and visibility are449

lowered when using spatial DR because of the reduced TN class and more similar average background450

signature respectively. As in the results gathered from the OP7 dataset, applying spectral DR improves451

the balanced accuracy and visibility of the full spatial scene at lower values of K. The remaining452

results were obtained with K = 20 as it provided a good balance between detector performance453
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Figure 15. Performance measures using the ACE TD algorithm and each DR scheme with a varying
number of retained components on the UDRC Selene dataset.

and compression. The results shown in Figure 15 also indicate that improved performance could be454

obtained at K = 40 at the expense of compression rate. It must again be noted that FPCA requires455

more careful consideration when selecting the value of K in order to avoid the creation of a singular456

matrix and avoid the dips in performance as seen in Figure 15. This is discussed in detail in Section 4.457

Similar to the results obtained on the OP7 dataset in Figure 11, removing the vegetation and458

simplifying the background class improves separation between the synthetic background and targets.459

Whilst there is an overall decrease in target visibility, as the average spectra is more similar to the460

desired targets, there is less varied information to be represented, either in the full dimensionality461

image or in a dimensionality reduced subspace. This leads to less confusion in the detection image, as462

shown in Figure 16d, where the clutter present in the scene is less likely to be misidentified as a target,463

when compared to Figure 16b.464
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Figure 16. Detection statistics of the ACE algorithm on the full dimensionality data where yellow
indicates a response of 1 and blue represents a response of 0. a) Without spatial DR. b) Enlarged version
of a). c) With NDVIre. d) Enlarged version of c).
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Figure 17. ROC and PR curves for detecting Target 3 (green ceramic) in the Selene dataset a) ROC
curve using the full spatial dimensionality data. b) ROC curve using spatial DR pre-processing. c) PR
curve using the full spatial dimensionality data. d) PR curve using spatial DR pre-processing.

The ROC curves in Figures 17a and 17b are of the ACE detection statistics on the full scene and465

NDVIre-based spatial DR scene respectively. The two sets of ROC curves are almost identical and do466

not provide definitive results, but indicate a small improvement when using the spatial DR. Comparing467

the PR curves in Figures 17c and 17d show that when each spectral DR scheme is used in conjunction468

with spatial DR the AUC is increased by 10-15%.469

The average results for each target in the Selene dataset are shown in Table 7 when considering470

the full scene and in Table 8 when spatial DR has been applied. The average performance of the ACE471

detector when combined with each spatial and spectral DR method used are shown in Figure 18.472
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Table 7. Average performance measures for each target in the Selene dataset without spatial DR applied
using the ACE algorithm.

ACE-Full
K = 20 DR AUC ROC AUC PR Visibility Precision Recall Bacc F1 MCC

Brown Carpet

Raw 0.97 0.33 0.65 0.19 0.67 0.82 0.17 0.24
PCA 0.97 0.06 0.60 0.04 0.64 0.80 0.03 0.07
MNF 0.97 0.46 0.75 0.17 0.78 0.87 0.15 0.21
FPCA 0.97 0.55 0.75 0.22 0.78 0.87 0.20 0.26
ICA 0.97 0.57 0.75 0.25 0.78 0.87 0.22 0.28

Green Carpet

Raw 0.98 0.61 0.82 0.32 0.83 0.91 0.36 0.43
PCA 0.95 0.07 0.45 0.06 0.51 0.72 0.03 0.06
MNF 0.98 0.54 0.80 0.23 0.83 0.89 0.24 0.30
FPCA 0.98 0.58 0.85 0.25 0.89 0.92 0.29 0.35
ICA 0.98 0.60 0.86 0.22 0.90 0.92 0.27 0.32

Green Ceramic

Raw 0.99 0.65 0.94 0.19 0.94 0.96 0.29 0.39
PCA 0.98 0.60 0.85 0.16 0.89 0.92 0.19 0.26
MNF 0.99 0.60 0.93 0.13 0.95 0.96 0.20 0.29
FPCA 0.99 0.54 0.94 0.12 0.96 0.96 0.20 0.30
ICA 0.99 0.52 0.94 0.13 0.96 0.96 0.20 0.30

Green Perspex

Raw 1.00 0.63 0.95 0.22 0.95 0.97 0.32 0.42
PCA 0.99 0.44 0.91 0.08 0.93 0.95 0.12 0.20
MNF 1.00 0.55 0.95 0.16 0.97 0.97 0.24 0.33
FPCA 1.00 0.51 0.95 0.16 0.97 0.97 0.25 0.34
ICA 1.00 0.57 0.96 0.15 0.97 0.97 0.23 0.33

Grey Ceramic

Raw 0.99 0.61 0.77 0.31 0.78 0.88 0.27 0.34
PCA 0.98 0.47 0.81 0.13 0.83 0.90 0.11 0.17
MNF 0.99 0.58 0.85 0.16 0.88 0.92 0.18 0.24
FPCA 0.99 0.55 0.84 0.18 0.87 0.91 0.21 0.27
ICA 0.99 0.53 0.82 0.18 0.85 0.90 0.19 0.25

Orange Perspex

Raw 0.99 0.32 0.90 0.12 0.90 0.95 0.20 0.31
PCA 0.99 0.25 0.92 0.05 0.93 0.96 0.08 0.18
MNF 0.99 0.29 0.93 0.07 0.94 0.96 0.13 0.24
FPCA 0.99 0.30 0.93 0.08 0.94 0.96 0.14 0.25
ICA 0.99 0.31 0.93 0.08 0.94 0.96 0.14 0.25

White Perspex

Raw 0.98 0.07 0.48 0.07 0.49 0.74 0.05 0.10
PCA 0.99 0.27 0.83 0.04 0.85 0.91 0.05 0.11
MNF 0.99 0.10 0.65 0.04 0.67 0.82 0.03 0.08
FPCA 0.98 0.03 0.56 0.04 0.59 0.78 0.03 0.07
ICA 0.98 0.02 0.45 0.03 0.49 0.72 0.02 0.05

All Spectra

Raw 0.99 0.46 0.77 0.21 0.78 0.88 0.23 0.31
PCA 0.98 0.30 0.74 0.08 0.77 0.87 0.08 0.14
MNF 0.99 0.46 0.82 0.14 0.85 0.91 0.16 0.23
FPCA 0.99 0.45 0.82 0.16 0.84 0.90 0.19 0.26
ICA 0.99 0.45 0.79 0.15 0.82 0.89 0.18 0.25
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Table 8. Average performance measures for each target in the Selene dataset with NDVIre-based spatial
DR applied using the ACE algorithm.

ACE-NDVIre
K = 20 DR AUC ROC AUC PR Visibility Precision Recall Bacc F1 MCC

Brown Carpet

Raw 1.00 0.20 0.53 0.15 0.55 0.76 0.13 0.18
PCA 0.97 0.01 0.31 0.00 0.37 0.65 0.01 0.03
MNF 0.99 0.15 0.56 0.12 0.61 0.78 0.09 0.14
FPCA 0.99 0.27 0.59 0.17 0.64 0.79 0.13 0.18
ICA 1.00 0.47 0.68 0.22 0.73 0.84 0.19 0.25

Green Carpet

Raw 1.00 0.63 0.82 0.37 0.83 0.91 0.41 0.47
PCA 0.95 0.05 0.41 0.05 0.46 0.70 0.04 0.07
MNF 1.00 0.48 0.75 0.24 0.79 0.87 0.24 0.31
FPCA 1.00 0.58 0.82 0.30 0.86 0.91 0.32 0.38
ICA 1.00 0.61 0.89 0.28 0.93 0.94 0.34 0.40

Green Ceramic

Raw 1.00 0.70 0.96 0.37 0.96 0.97 0.49 0.56
PCA 1.00 0.63 0.91 0.25 0.93 0.95 0.30 0.38
MNF 1.00 0.62 0.96 0.27 0.97 0.97 0.38 0.46
FPCA 1.00 0.60 0.96 0.28 0.97 0.97 0.39 0.46
ICA 1.00 0.62 0.96 0.30 0.98 0.98 0.42 0.49

Green Perspex

Raw 1.00 0.68 0.97 0.41 0.97 0.98 0.54 0.60
PCA 1.00 0.61 0.96 0.23 0.98 0.98 0.31 0.38
MNF 1.00 0.60 0.97 0.32 0.98 0.98 0.43 0.50
FPCA 1.00 0.60 0.97 0.33 0.98 0.98 0.44 0.50
ICA 1.00 0.64 0.97 0.33 0.98 0.98 0.44 0.51

Grey Ceramic

Raw 1.00 0.62 0.73 0.40 0.75 0.86 0.35 0.41
PCA 1.00 0.47 0.76 0.22 0.79 0.87 0.19 0.26
MNF 1.00 0.60 0.78 0.29 0.82 0.89 0.28 0.35
FPCA 1.00 0.58 0.78 0.29 0.83 0.89 0.30 0.35
ICA 1.00 0.60 0.79 0.28 0.83 0.89 0.27 0.34

Orange Perspex

Raw 1.00 0.35 0.87 0.18 0.87 0.93 0.25 0.36
PCA 1.00 0.25 0.91 0.09 0.91 0.95 0.14 0.25
MNF 1.00 0.35 0.92 0.11 0.93 0.95 0.18 0.29
FPCA 1.00 0.33 0.92 0.12 0.92 0.95 0.18 0.30
ICA 1.00 0.36 0.93 0.11 0.94 0.96 0.17 0.29

White Perspex

Raw 0.98 0.11 0.41 0.10 0.43 0.70 0.08 0.12
PCA 0.99 0.24 0.72 0.10 0.75 0.85 0.09 0.16
MNF 0.98 0.06 0.50 0.06 0.54 0.75 0.04 0.09
FPCA 0.98 0.06 0.48 0.05 0.53 0.74 0.04 0.09
ICA 0.94 0.02 0.35 0.02 0.41 0.67 0.02 0.05

All Spectra

Raw 1.00 0.46 0.73 0.28 0.74 0.86 0.30 0.37
PCA 0.98 0.30 0.67 0.13 0.70 0.83 0.14 0.20
MNF 0.99 0.40 0.75 0.20 0.78 0.87 0.22 0.28
FPCA 0.99 0.43 0.76 0.22 0.79 0.88 0.24 0.31
ICA 0.99 0.47 0.77 0.22 0.80 0.88 0.26 0.32
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Figure 18. Comparison between the performance measures when combining spatial and spectral DR
on the Selene dataset

In general, from Tables 7 and 8, the AUC of both the ROC and PR curves is similar regardless of473

the spectral and spatial DR used. By applying NDVIre-based spatial DR, the precision of the spatial474

DR coupled methods increases in comparison to using the full spatial scene with the recall dropping475

slightly. As seen in Figure 15, there is a decrease in visibility of the target when using the spatial DR476

as the highly dissimilar vegetative background is removed. Figure 18 shows that, on average, the477

visibility drops slightly for each of the spectral DR methods when NDVIre is applied when K = 20478

components are retained. The balanced accuracy also decreases slightly due to the reduction in the size479

of the TN class. Both the F1 score and MCC are improved when using spatial DR in all methods tested.480

The full dimensionality images with and without spatial DR have the best performance. However, of481

the spectral DR methods used, MNF, FPCA and ICA perform similarly despite retaining the equivalent482

of only 25% of the total spectral components. When combined with spatial DR both ICA and FPCA483

maintain the same level of performance as the full dimensionality image with no spatial DR applied.484

Applying the proposed method to the Selene dataset (Figure 18 and Tables 7 and 8) allows for improved485

results, however these improvements are not as significant as those achieved from the processing of486

the OP7 dataset. This can be attributed to the increased complexity of the Selene trial images when487

compared to the OP7 data. The performance can be improved further by retaining additional DR488

components, as shown in Figure 15, albeit at the expense of compression and therefore at an increased489

computational cost.490

4. Discussion491

The proposed NDVIre-based spatial DR is relatively simple, requiring information from only two492

wavelengths and can be readily applied to TD and other similar applications. By using NDVIre it is493

possible to detect varied spectral targets composed of metals, plastics and other synthetic materials494

against a vegetative background. NDVI variants allow for the discrimination between vegetative and495

non-vegetative pixels due known material characteristics in the red-edge portion of the spectrum.496

Other VIs, whilst not considered here, as exploiting the red-edge portion was determined the key497

component of this method, may provide alternative insights and allow for the more optimal detection498

of additional materials in alternative environments. By combining both spatial and spectral DR, the499

computational complexity and memory requirements can be reduced whilst maintaining, or in some500

cases improving upon, detection performance as shown in Figures 13 and 18. Using spatial DR had501

little effect on the AUC of the ROC or PR curves, the main improvements came from the increased502

F1 score, MCC and precision. On average, there is a slight reduction in recall and balanced accuracy,503

however, one correctly detected and classified pixel per target may be sufficient for certain applications.504

The complexity and performance of the spectral DR methods utilised varies. PCA is the simplest505

method used but also requires the most spectral components to be retained in order to be competitive.506

Applying the spatial DR and simplifying the background prior to performing spectral DR improved the507
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performance of all methods but most notably when using PCA, which was competitive in both datasets508

with the addition of spatial DR. MNF can be conceptualised as two PCAs, one for noise reduction and509

the second to transform the noise whitened data into the reduced subspace. This extra noise removal510

step offers a distinct advantage when compared to PCA and allows it to perform similarly to FPCA511

and ICA. FPCA performed favourably in both datasets and is efficient given the simplification when512

calculating the partial covariance matrix. However when using FPCA the choices of the number of513

components, K, and the height, H, and Width, W, of the folded matrix are far more sensitive than the514

other methods and are subject to two rules:515

1. K must be a factor of the total number of wavelengths L516

or517

2. When selecting the folding parameters H and W, L > (H − 1)W518

In any case where the first rule is true, the expression in the second rule will automatically519

be valid. H was selected to be half the value of K in order to adapt with the changing number of520

components. However, due to the folding process, padding the folded array with zeros in order to521

fulfil the expression H ×W = L, if these zeros formed an entire row of the covariance matrix they will522

form a zero component in both the projected image and target. When these interact in each of the TD523

algorithms, usually by inner product, it forms a singular matrix. As inverse matrices are prevalent in524

the implementations of the TD algorithms used, singular matrices completely suppresses the detection.525

This phenomenon caused the undulating behaviours present in Figures 10 and 15 and informed the526

choice of the number of DR components in order to compare each TD algorithm. ICA is the most527

complicated and computationally expensive method to compute, but performed well on both datasets.528

Only using the full dimensionality data, with and without spatial DR was an improvement over the529

ICA based methods. In general the spectral DR methods, whilst increasing the balanced accuracy and530

visibility when smaller numbers of components are retained, decrease the F1 score and MCC when531

compared with the raw full dimensionality data. Both FPCA and ICA offer consistent and improved532

detection when combined with ACE and NDVIre-based spatial DR. In general, the most impressive533

results are obtained using the ACE TD algorithm which corroborates the conclusions of other similar534

works investigating this topic [11,14,17].535

The methods detailed here offered improvement to the TD performance on both datasets536

considered. However greater improvements were obtained on the simpler dataset. Increasing the537

number of spectral DR components retained to account for the increased variability in the Selene538

dataset would improve the performance. This is at the expense of the compression rates that can be539

achieved at lower values of K. On average applying NDVIre-based spatial DR increases precision540

and slightly decreases the recall of the TD algorithms used. The visibilities of the targets decrease as541

background pixels which are dissimilar to the targets are not considered. The average background542

signature, after applying the NDVIre-based spacial DR, becomes more similar to the target signatures.543

However, applying spectral DR and mapping the data into a more informative subspace can alleviate544

this issue.545

5. Conclusion546

DR is a tool often employed in various hyperspectral imaging applications, usually to reduce the547

number of spectral bands present in an image due to its high spectral redundancy. However, known548

spatial redundancies are rarely exploited. This paper provides an investigation into how spatial DR549

can be utilised in a TD application. We have shown that in each case tested using multiple spectral550

DR schemes, the addition of a spatial DR pre-processing stage improved the performance of the TD551

algorithm considered. By applying both spatial and spectral DR the complexity of the data is reduced552

and computational cost and memory requirements can be lowered.553

We used robust, classical TD/AD and DR algorithms in order to assess the proposed method. The554

provision of a priori information gives the TD algorithms an advantage over AD algorithms like the RXD555
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for example. Whilst the RXD correctly identifies the anomalous pixels, it fails to discriminate between556

specific target spectra resulting in low precision. Therefore, AD is insufficient for the application we557

are proposing. Of the detection methods tested, the ACE algorithm performs the best both when558

considering the full spatial scene and when applying the NDVIre-based spatial DR - especially when559

combined with the FPCA and ICA DR algorithms.560

We have shown that the proposed pipeline can compress an input image by >90% whilst561

maintaining the detector performance seen in the processing of the raw images. This pipeline is562

readily applicable in TD scenarios where the predominant background is comprised of vegetative563

pixels. The proposed method may be adapted to suppress other, highly predictable background564

signatures given an appropriate index. Indices such as the built-up index could provide the inverse565

to NDVI and its variants masking non-vegetative pixels directly, or alternatively providing auxiliary566

features. Additionally, multiple indices can be generated rapidly and combined to provide additional567

information about the pixels in a scene. Existing indices could also be used in the detection of568

camouflaged objects or bespoke alternative measures may be developed from such an investigation.569

Potential future work includes using an adaptive method for selecting the optimal number of570

components, K, to retain in each DR method. In PCA, MNF and FPCA, variations on scree plots [20]571

can be used to find the elbow point. Alternatively, the value of K at which the number of components572

represent a sufficient percentage of the variance in the data could be chosen. Similarly for ICA, VD573

[28] can be used to estimate the number of spectrally distinct sources in the image and allows for the574

automation of this approach.575

Although the proposed spatial DR approach has been tested on classical DR and TD/AD576

algorithms more state-of-the-art approaches to spectral DR could be considered as well as more577

complex detection algorithms. While the visibility of the target generally dropped when using spectral578

DR, the detection was improved and so a measure which can determine how distinctive the target is579

within the reduced subspace would be of benefit. Along with spectral DR other methods of spatial DR580

could be considered.581

In order to avoid saturation of tables and results, the most informative and interesting results582

were included here. The full set of results generated from this work will be available online at a later583

date.584
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Acronyms

ACE Adaptive Cosine Estimator.
AD Anomaly Detection.
AUC Area Under the Curve.
CEM Constrained Energy Minimisation.
DR Dimensionality Reduction.
EVD Eigenvalue Decomposition.
FAR False Alarm Rate.
FN False Negative.
FP False Positive.
FPCA Folded Principal Component Analysis.
FPR False Positive Rate.
GSD Ground Sample Distance.
IC Independent Components.
ICA Independent Component Analysis.
MCC Matthew’s Correlation Coefficient.
MNF Maximum Noise Fraction.
NDVI Normalised Difference Vegetation Index.
NDVIre Normalised Difference Vegetation Index (red-edge).
NIPALS Non-linear Iterative Partial Least Squares.
NIR Near-InfraRed.

OSP Orthogonal Subspace Projection.
Pd Probability of Detection.
Pfa Probability of False Alarm.
PC Principal Components.
PCA Principal Component Analysis.
PR Precision-Recall.
RENDVI Red Edge Normalised Difference Vegetation Index.
ROC Receiver Operator Characteristic.
RXD Reed-Xiaoli Detector.
SAM Spectral Angle Mapper.
SID Spectral Information Divergence.
SNR Signal-to-Noise Ratio.
TD Target Detection.
TN True Negative.
TNR True Negative Rate.
TP True Positive.
TPR True Positive Rate.
VD Virtual Dimensionality.
VI Vegetation Indices.
VNIR Visible and Near-InfraRed.
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