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Abstract: Hyperspectral imaging for agricultural applications provides a solution for non-destructive, 

large-area crop monitoring. However, current products are bulky and expensive due to complicated 

optics and electronics. A linear variable filter was developed for implementation into a prototype 

hyperspectral imaging camera that demonstrates good spectral performance between 450nm – 

900nm. Equipped with a feature extraction and classification algorithm, that can be used to determine 

potato plant health with ~88% accuracy. This algorithm was also capable of species identification and 

is demonstrated as being capable of differentiating between rocket, lettuce and spinach. Results are 

promising for an entry-level, low-cost hyperspectral imaging solution for agriculture applications. 

 

OCIS Codes: (310.1860) Deposition and fabrication; (310.6845) Thin film devices and applications; 

(110.4234) Multispectral and hyperspectral imaging. 

 

1. Introduction 
Crop monitoring has been of significant importance in 

recent years, particularly for improved crop yield and food 
security. The ability to know which areas in a field require 
attention, can prevent localized drought and spreading of 
disease. This is difficult to do manually considering the scale of 
the task, new technologies such as LiDAR, multispectral and 
hyperspectral imaging (HSI) solutions have addressed these 
challenges.  HSI has great potential in agriculture applications, 
particularly for disease detection [1-4], plant development [5] 
and large area soil nutrient content monitoring [6]. These 
technologies also reduce the training and experience required to 
perform the same task manually. For example, basal stem rot 
(BSR) is a fatal fungal disease of palm oil plantations and Liaghat 
et al. (2014) [1] used reflectance spectroscopy analysis, in the 
visible to near infrared region (325-1075 nm) to assess this 
disease. This analysis determined whether the health of palm 
leaf samples were from healthy, slightly damaged, moderately 
damaged and heavily damaged trees. Their results achieved 
rapid screening of BSR in palm using spectral analysis.  Sankaran 

et al. (2013) [4] demonstrated use of visible-near infrared and 
mid-infrared spectroscopy to distinguish whether citrus leaves 
were infected with canker, with a classification accuracy of 
~90%. Liu et al. (2014) [5] monitored, non-destructively, 
changes of chlorophyll content for field plants, using a real-time 
monitoring system based on visible and near-infrared reflection 
spectroscopy. Their investigation validated adequate 
performance of spectral analysis by comparing the results with 
chlorophyll index determined by the standard instrumentation. 
Their investigations also indicated that reflectance at 700 nm is 
a sensitive indicator of chlorophyll concentration. Linear 
variable filters (LVFs) provide an alternative optical system to 
diffraction gratings, as seen in a study by Emadi [7] et al. (2012) 
who developed a Fabry-Perot type LVF for an ultraviolet micro-
spectrometer; for potential applications in atmospheric gas 
sensing and pharmaceutical analysis. Citing an advantage from 
LVFs not requiring moving parts which is particularly important 
for effective space utilization. However, due to its optical 
assembly the spectrometer was rather bulky and has low 
sensitivity in the UV region. An issue with producing LVFs is that 
they are relatively complicated optical filter designs, so volume 
production is an issue, however, L. Abel-Tiberini [8] specifically 
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developed masking mechanisms to produce LVFs with high 
throughput. This process has difficulties achieving desired 
thickness gradients for variable filters. While the potential of 
these spectral analysis systems seem promising, current HSI 
systems are bulky and expensive. This makes it difficult to 
expand their usage, with pricing of these systems typically on the 
order of $10,000s. This article addresses these issues, designing 
a low cost, portable HSI camera for agritech by utilizing novel 
linear variable bandpass filters (LVFs). The Hyperspectral Crop 
Camera (HCC), was developed and prototyped. These LVFs 
significantly reduce spectrometer size and cost. 
 

2. LVF Fabrication 
 

A. Equipment and Process  
 

Deposition of the Linear Variable Filter (LVF) was 
carried out using a microwave plasma assisted pulsed DC 
reactive sputtering process. Mechanical masking to achieve 
spatial variation in bandpass centre wavelength across the 
substrate surface was applied. Figure 1, shows the configuration 
of the deposition system. This employs a horizontally mounted 
rotating drum, where substrates are mounted, with configurable 
flanges for target masks. A microwave-plasma source is set up at 
the top of the system. 

 

 
Figure 1. Schematic of Microwave Assisted Pulsed DC rotating 
drum Sputter deposition System with mechanical masking, used 
to deposit novel LVFs. This shows targets, masks, the microwave, 
circumferential direction, and axial distribution direction. 

 
The drum rotation speed is such that two monolayers 

are deposited per pass across the magnetron targets, thereby 
allowing full oxidation of the metal rich sputtered film in the 
separate microwave plasma region. One key advantage of the 
microwave plasma in this pulsed-DC reactive sputtering system 
is its separated sputtering and oxidation zones. Only argon gas is 
introduced at the target region and oxygen in the microwave 
plasma zone. This provides metal-like sputtering and separated 
microwave plasma assisted oxidation enables high deposition 
rates and high-quality films with less pin holes to be achieved. 

 
The critical deposition rate for this process has been 

investigated previously with the use of an adjustable mask 
placed between targets and rotating drum, in order to produce 
the desired LVFs. A significant advantage of a drum produced 
LVF is the avoidance of curvature for the same wavelength line. 

Figure 2 shows an example of an LVF produced with this 
deposition system with XY axes. This drum-based system has 
great uniformity along the circumference of the drum, thus 
producing a linear thickness gradient along x-axis and uniform 
thickness along transverse direction (y-axis) [9].   
 

 
Figure 2. Exemplar LVF orientation with y-axis representing the 
linear uniformity and x-axis representing the linear thickness 
gradient. 

 
To improve the coatings several measures were taken: 
- Pulsed DC sputtering is employed to suppress arcing 
- Non-microwave assisted plasma produces molecular 

oxygen whereas with the addition of microwave 

atomic oxygen can be achieved.  As a result oxygen is 

more readily available to react with each layer passing 

by for a more uniform oxidation of the coating 

therefore, resulting in much improved film 

homogeneity  

- The Deposition of a metal layer first reduces the 

chance of pin-hole formation allowing for higher 

optical densities films. 

- Utilizing a partial pressure controller permits for total 

control of oxygen partial pressure. In turn uniform 

oxidization of the film can be achieved as oxygen 

reactivity varies thorough the process.  

Dielectric materials used to produce the optical filter 
are Niobium and Silicon (purchased from Testbourne Ltd.  - 
99.99% Pure - and were used as received) for high/low 
refractive index, Nb2O5 and SiO2 respectively [10]. In order 
to produce a film with varying thicknesses across the 
surface, a custom uniformity mask had to be utilized. To 
produce such a mask for an optical filter as complicated as 
these LVFs, mask design is taken into great consideration. 

 
B. Mask Design for Linear Gradient Thickness  
 
A programme was written to design deposition masks that 
produces the desired thickness distributions for a configuration 
of substrates on a rotating drum, a target, and a mask with pre-
defined shape function [11]. As depicted in Figure 3. In order to 
optimize the mask to achieve desired thickness distribution, 
several variables are considered; the sputtering yield, angular 
distribution of the ejected particles of the target, the mask 
restriction function, the arriving angle of sputtered particles on 
the substrate, as well as the substrate movement.  
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Figure 3. Schematic of the sputtering geometry, where the 
substrate is mounted on a rotating drum, β is the ejected particle 
flux emission angle to the target surface normal, and γ is the 
deposited particle flux incident angle to the substrate surface 
normal. On path A, the particle reaches the substrate, and on 
path B, the particle is blocked by the mask. This is generated 
directly from the measurement of the target erosion track 
profile. 

 
The magnetic field was calculated and fed into the semi-
empirical model to create the etch profile of the dielectric 
materials (targets). The Etch profile is calculated by taking into 
account the integration of ion energy along approximate ion 
path. By relating the magnetic field, Btan, to the erosion track 
profile, a 2D data array is obtained as trackyeild. Ejected atoms 
angular distribution is a function of the angle of incidence of the 
incident bombardment beam. Using pulsed-DC magnetron 
sputtering this angle is almost at the normal to the target surface. 
Considering turbulent electric field collisions, a Monte Carlo 
simulation determined a mean incident angle close to normal 
incidence for this simulation.  
 
Angular distribution can be reduced to two unknowns, described 
as: 
 

𝑓(𝛽) = cos⁡(𝛽 − 𝛽0)
𝑛 (1) 

 
Where, 𝑓(𝛽) is the angular distribution function of ejected atoms 
and 𝛽0 is the angle of maximum emission.  
 
For each point source, particle arrival rate is proportional to the 
inverse square of the distance between target and substrate. 
cos⁡(𝛾) corrects for the drum and substrate rotation (𝛾 being the 
angle between the beam/substrate and normal incidence). A 
further function passrate determines whether the mask blocks 
material arriving to the substrate.  
 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
cos⁡(𝛽−𝛽0)

𝑛×𝑇𝑟𝑎𝑐𝑘𝑓𝑖𝑒𝑙𝑑×𝑝𝑎𝑠𝑠𝑟𝑎𝑡𝑒×cos⁡(𝛾)⁡

𝑟2
 (2) 

 
The target and substrate coordinates, (𝑋𝑡 , 𝑌𝑡, 𝑍𝑡)⁡ and 
(𝑋𝑠 , 𝑌𝑠, 𝑍𝑠)⁡respectively, are meshed with sum probabilities of all 
target elements determining relative thickness. Film thickness is 
circumferentially uniform, therefore only two substrate 
coordinates are required to be derived. A specific dataset is 
determined using coordinates 𝑋𝑠 , 𝑌𝑠0 − 𝑅𝑠𝑖𝑛(𝜃), 𝑍𝑠0 − 𝑅𝑐𝑜𝑠(𝜃) 
for the point 𝑋𝑠 at the centerline and moved to the θ angle, shown 
in figure 3. Here, (𝑋𝑠 , 𝑌𝑠0, 𝑍𝑠0) are the coordinates on the rotating 
axis. The final relative thickness at point Xs can be obtained by 
integrating θ for a range of⁡(−𝜃0, 𝜃0). The final equation for 
thickness simulation is: 
 

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁡(𝑋𝑠) = ∑𝜃∑𝑋𝑡,𝑌𝑡,𝑍𝑡

cos⁡(𝛽−𝛽0)
𝑛×𝑇𝑟𝑎𝑐𝑘𝑓𝑖𝑒𝑙𝑑×cos⁡(𝛾)⁡

𝑟2
 

      (3) 

Thus, using these functions with a desired thickness distribution 
for the LVFs, a mask geometry was designed. This was then used 
in the microwave plasma assisted pulsed-DC reactive sputter 
deposition configuration to yield high quality LVFs. 
 

C. Deposited LVF 

LVFs, as seen in Figure 4, were produced as a result of optimised 
target mask design. This calculated shape matches the thickness 
distribution required to the gradient structure of the deposited 
LVF, shown in figure 5.   
 

 
Figure 4. Thickness distribution of thin film layer on substrate 
produced using masks determined by simulation for accurate 
gradient structure.  

 

Masked depositions have resulted in LVFs with observable 

distinctions between colors, as this is affected by the thickness 

distribution. Figure 5, shows an Photograph of two LVFs 

produced by the above mentioned optimised process, these 

allow linear spectral transmission /reflection tuning along the x 

axis of the filter, while the optical properties remain uniform 

along the filter’s y axis.  

 

Fig 5. Example of fabricated LVF with distinctive color gradient 
representing linear thickness gradient.  

 

Spatially linear variable visible bandpass filters were produced 

that allowed for high optical performance from 450 nm to 900 

nm. Figure 6, show the optical transmission and peak 

transmission wavelengths as a function of position on the LVFs.  
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Figure 6. Linearity and passbands of 450 to 900 nm LVF. 

 
These wavelengths enable studies with multispectral and 

hyperspectral imaging techniques, in particular with 
applications in agriculture. 
 

3. Camera Development 
A. hardware structure and constituents 

 
The HCC design requires LVF position manipulation. A step 

motor with custom designed rack and pinion allowed translation 
of a Linear Variable Filter (LVF) across a standard high spatial 
resolution monochromatic image sensor (1.3MP IDS E2V CMOS 
Image Sensor). This creates discrete vertical strips at linearly 
spaced wavelengths in each image. Figure 7 shows a basic 
schematic of the imaging aspects of the HCC. 
 

 
Figure 7. Basic components and LVF in camera set up. 

 
To translate the LVF, it was bonded to a custom 3D 

printed holder. The holder was linked to a high-resolution step 
motor via a rack and pinion arrangement. The Ratio of the 
gearing was selected as to maximize the resolution of linear 
movement, where one step from the motor equated to 0.1mm 

linear movement. Using this design the LVF can be precisely 
translated at relatively high speed. Capable of covering the full 
length for a full high resolution spectral scan, with adjustable 
exposure times for different lighting conditions. The HSI camera 
is also capable of multi-spectral and lower-spectral resolution 
imaging that can be achieved in less time.  LVF position was 
controlled with an infrared optical sensor and the LVF returned 
to a known home position before each image scan. Positioning of 
the LVF was found to be both accurate, consistent and 
repeatable.  
 
B. Wavelength Calibration 

 
Once fully assembled, the prototype HCC was calibrated, using 
Hydrogen and Helium gas discharge lamps. Discrete 
wavelengths of these gas discharge lamps were used to correlate 
step position to wavelength for the LVF. H and He were chosen 
as both have several distinct emission lines in the visible 
spectrum. The lamps were imaged using a high resolution scan 
over the entire LVF spectral range from 450nm to 900nm.  The 
expected step position was compared to the actual step position 
that each of the discharge lines that appeared in the calibration 
images.  An adjustment was then made to the starting position of 
the scan to bring the theoretical step position of the wavelength 
in line with the actual step position. Once calibrated the device 
was then compared to the wavelength data from the LVF.  The 
measured LVF data was then used to create a linear plot of 
wavelength vs step position, see Figure 8 and table 1. This plot 
was used to calibrate the LVF step position, corresponding the H 
and He gas lamp discharge peaks with corresponding step 
positions. Once calibrated the H and He emission lines 
correspond very well with the expected step position with the 
error between expected wavelength and the actual wavelength 
measured by the HCC found to be no greater than ±5nm. 
 

 
 

Figure 8.  Shows the successful calibration of LVF step positions 
and correlating wavelengths (linear relation). 

 
Table 1: LVF step position, corresponding the H and He gas 
lamp discharge peaks with corresponding step positions. 

Actual 
wavelength λa 

(nm) 

Emission Line 
Detected at step 

Step Position 
Converted to 

Wavelength λb 
(nm) 

486 64 488 

492 70 495 
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501 78 506 

505 80 508 

587 152 586 

656 210 653 

667 224 665 

707 260 705 

 
 

Testing the proof of principle system showed good 
results confirming that the manipulation of the LVF position was 
both accurate and repeatable. 
 
C. Performance of the HCC 
 
 The HCC was developed as a low cost hyperspectral imaging 
camera and as part of the development of the device, the HCC 
was benchmarked against a high end pushbroom hyperspectral 
system. For reference, the HCC device was approximately 1/10th 
of the cost of the pushbroom benchmark device. 
 

 
Figure 9. Prototype HCC assembly with internals exposed and as 
a final compact design.  

 

 
 
Figure 10. A Lab sphere certified reflectance standard (left) was 
used to characterize the HCC (middle) and pushbroom (right) 
system and compared against the reference spectrum 

 
Spectra acquired by the HCC and the traditional pushbroom HSI 
system are highly correlated, as seen in Figure 10, both closely 
resemble the manufacturer’s reference spectrum in between 
450nm – 900nm. The spatial and spectral resolution of both 
systems with comparable parameter settings were compared 
with results shown in figure 11. 
 

Table 2: Spectral and spatial resolution for prototype and 
traditional pushbroom HSI system, with similar settings. 
 

 Spectral 
Resolution 

Spatial 
Resolution 

HCC 4.53nm 1280 x 1024 
Pushbroom 2.44nm 377 x 336 

 
While the spatial resolution of the HCC is far superior to that 

of the pushbroom system, the spectral resolution of the 
pushbroom system is approximately twice that of HCC when 
comparable settings. In spite of the reduced spectral resolution, 
as would be expected due to the device being in the prototype 
stage; the spectral data acquired by the HCC is accurate when 
compared to the reference reflectance standard and has been 
demonstrated to allow for accurate data acquisition. 
 

4. Data Analysis and Classification of Plant Life  
 
A. Data Capture and Reordering 

 
The prototype HCC camera captures images in 3-

dimensional hyperspectral data-cubes by translating the LVF 
across the field of view, capturing a set of images with discrete 
vertical strips at linearly spaced wavelengths over subsequent 
steps in time. As a result, the spatial and spectral information is 
spread over multiple successive images. This method of 
capturing hyperspectral data is known as spatio-spectral 
imaging and an example is shown visually in Figure 12.  

 
Figure 11.  Temporal steps in capturing a hyperspectral image 
using the spatio-spectral method 

 
A reordering algorithm was developed in order to 

manage camera data segments into wavelength dependent 
images for analysis. This is done in order to obtain a more 
traditional representation of a hyperspectral datacube, where 
each wavelength is contained in one plane and each successive 
frame represents an increasing wavelength. With this reordering 
algorithm, the data captured using the HCC is equivalent to that 
captured using a traditional pushbroom sensor. 
 

In order to validate the HCC’s usefulness in crop 
monitoring and classification, two distinct datasets were 
acquired. The first consisted of images containing three types of 
salad leaves and was intended to determine whether images 
captured using the HCC would be sufficient in differentiating 
these species. The second dataset consisted of select leaves 
collected from potato trial fields at JHI, where select plants had 
been exposed to late blight, a common disease in potato crops. 
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These datasets were then employed in support vector machine 
(SVM) classification for these two tasks, where a multiclass SVM 
was used to determine the species of leaf in the first task and a 
binary SVM to differentiate between healthy and unhealthy 
areas on the leaves in the second task. 

 
B. Feature Extraction and Dimensionality Reduction  
 

Regions of interest (ROIs) have to be extracted from 
the image by visual inspection. After ROIs have been determined, 
the relevant spectra were extracted and class labels assigned. 
Standard Normal Variate (SNV) is a common tool in 
Hyperspectral data pre-processing [12, 13]. This was applied to 
correct for noise and scatter effects. spectrum in the 
hyperspectral datacube, 𝑥𝑖,𝑗 , is normalised by subtracting its 

mean value,𝑥𝑖,𝑗̅̅ ̅̅ , before being divided by the standard deviation, 

𝜎𝑥𝑖,𝑗 , of the spectra :  

 

𝑥𝑖(𝑆𝑁𝑉) =
𝑥𝑖−𝑥𝑖̅

𝜎𝑥𝑖
  (4) 

 
This process creates a set of spectra where the average 

of each spectrum is zero with variance of one 

Figure 12. Effect of SNV on a set of spectra, normalised spectrum 
with reduced noise and interference. 

 
Employing SNV normalisation results in the negation of 
disparity caused by changes in illumination or noise scattering 
through the removal of the mean bias. With a normalised 
intensity, like-pixels with similar spectra should be classified 
similarly despite the differences in original illumination. PCA, 
also known as the discrete Karhunen–Loève Transform or the 
Hotelling Transform [14], can be used as both feature extraction 
and dimensionality reduction, making it a common statistical 
technique used in HSI analysis [15]. PCA attempts to capture the 
most variance within a data set whilst reducing the number of 
components needed to recreate the original dataset. 
Representing a highly correlated high dimensional dataset in a 
lower dimensional space. This is significantly less 
computationally intensive and in turn quickens processing 
analysis and classification [16]. PCA computes the covariance 
matrix from the SNV normalised data cube. Eigenvalues and 
Eigenvectors can be extracted from this covariance matrix by 
Eigen decomposition. By reordering the Eigenvalues in a highest 
to lowest list, can be used to recreate a representation original 
dataset, while discarding redundant information, in a new 
subspace.  
 
C. Support Vector Machines Testing - Data Prediction and 
Classification  
 

The dimensionally reduced dataset has to be test/train 
split with random sampling. A subset (typically lower than 10%) 
of all spectra is selected to form a training set for a classifier, 
whilst the remaining data is used for testing and accuracy of a 
trained SVM [17]. For HSI datasets SVMs are a common 
classification technique [18]. SVMs attempt to classify data into 
distinct groups by virtually drawing a maximum margin 
hyperplane between groups or clusters of data points. Often the 
data is not linear and has to be separated using a kernel trick 
[19]. This shifts data into a higher dimension and splits a 
hyperplane between data clusters in a z-direction as opposed to 
standard x-y plane. SVM is a binary technique however, adopting 
a one vs all method allows for multiple groupings/clusters to be 
classified. SVM models have to be trained, by exposing the model 
to examples of groupings/classes the model attempts to find an 
ideal solution by iteration. Using a trained model the SVM can 
predict and classify never before seen data into the classes 
selected during training. The algorithm for data analysis and 
classification of crop types and crop diseases was developed.  
 
 
D. Classification of Salad Leaves 

 
The ROIs were extracted to distinguish between three 

types of salad leaves, namely spinach, rocket and lettuce and 
split into a test set and a training set. Using the training set to 
make prediction equations for an SVM classifier. The accuracy 
was evaluated on the test set. PCA was used for dimensionality 
reduction and feature extraction. The SVM used the Radial Basis 
Function (RBF) Kernel and selected the optimal parameters grid 
search using k-fold cross-validation. The results of the SVM 
classifier in figure 14 and accuracies in Table 3. 

 

 
Figure 13. Classification of salad leaves with accuracy using the 
decision/classification algorithm. Demonstrating the camera 
distinguishing differences in similar leaf types.  
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Table 3: Results of the SVM classifier on unseen images. 

Class Training 
Image 

Unseen 
Image 1 

Unseen 
Image 2 

Lettuce 99.99% 99.97% 100.00% 
Rocket 99.64% 99.43% 96.54% 
Spinach 99.27% 92.59% 78.12% 

 
 

 
Aside for some visible confusion between spinach and 

rocket the SVM classifies the individual types of salad leaves very 
effectively. This implies that the clusters of data are separable 
and that the SVM-based model is highly accurate. 

 
E. Classification of healthy and unhealthy potato crops 
 

To classify late blight in potato crop, both healthy and 
diseased leaves were collected and mounted on a black card 
background for imaging. The data provided from HSI imaging 
was subject to the same procedure of analysis, both pre and post 
processing. Using a subset of the data as training and testing data 
by random sampling. An SVM was trained and applied for 
classification of spectra from healthy and diseased leaves. Once 
trained, the model was applied to classify the test data and the 
results of classifying two potato plots with “Orchestra” variety, 
plots 6 and 20 in the trial which contained both healthy leaves 
and some displaying symptoms of blight.. The healthy and 
unhealthy leaves were used to train an SVM to distinguish 
between areas displaying the symptoms of late blight versus 
healthy areas and this was tested using leaves which . The results 
from plot 6 are shown in Figure 15, where the leaves in the top 
left image are healthy and the leaves in the top right image are 
diseased. For training data 10% of pixels in two leaves from each 
set were used to train our SVM to recognise the spectra of 
healthy/unhealthy leaves before using it to classify each of the 
leaves. 

 
Figure 14.  Supervised classification of the HCC image of plot 6 
"Orchestra" using a trained SVM 

 
The leaves are mostly classified correctly, if a majority 

voting approach was used each would be classified entirely as 
healthy or unhealthy based on the dominant class. In the 
previous examples, the majority of each leaf was showing 
healthy or unhealthy characteristics. In the leaves taken from 
plot 20, another “Orchestra” variety, small regions were 
displaying signs of blight. One such region was selected as the 
unhealthy training data and a balanced number of pixels was 
selected to be the healthy training data. Again, these samples 
were used to train a model using an SVM which was used to 
classify the rest of the testing pixels. The results of this 
classification are shown in Figure 16.  

 

 
 

Figure 15. Supervised classification of the HCC image of plot 20 
"Orchestra" using a trained SVM 

 
This resulted in 88% accuracy in discriminating 

between healthy and unhealthy pixels. Given that several of the 
infected plants imaged were not symptomatic at the time of 
imaging, this level of accuracy is promising. It indicates that the 
HCC can be used to detect crop pathogen infection at an early 
stage, enabling time for treatment and avoidance crop yield loss. 
 

5. Conclusion 
 

A cost effective visible to near-infrared LVF was developed, 
using our custom deposition mask design. This enabled volume 
production of LVFs with controlled thickness distributions. 
These LVFs in conjunction with a suitable detector system can 
reduce costs, weight and size. A low-cost HSI camera was 
manufactured using the developed LVFs, with performance 
comparable with commercial alternatives. This provides a high 
price-to-performance value proposition.  Compared to a high 
end pushbroom hyperspectral imaging system with similar 
specifications, the HSI prototype camera was comparable while 
only costing approximately 10% of the reference system. An 
algorithm for the HCC system shows good feature extraction and 
SVM classification between similar leaf varieties and achieved 
~88% accuracy in discriminating healthy and late blight 
expressing classes of potato plant leaves. These results are 
promising for future applications of the low-cost HSI camera, 
including potential for aerial and satellite monitoring.  
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