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ABSTRACT

High resolution aerial and satellite borne hyperspectral imagery provides a wealth of information about an imaged
scene allowing for many earth observation applications to be investigated. Such applications include geological
exploration, soil characterisation, land usage, change monitoring as well as military applications such as anomaly
and target detection. While this sheer volume of data provides an invaluable resource, with it comes the curse of
dimensionality and the necessity for smart processing techniques as analysing this large quantity of data can be a
lengthy and problematic task. In order to aid this analysis dimensionality reduction techniques can be employed
to simplify the task by reducing the volume of data and describing it (or most of it) in an alternate way. This
work aims to apply this notion of dimensionality reduction based hyperspectral analysis to target detection using
a multivariate Percentage Occupancy Hit or Miss Transform that detects objects based on their size shape and
spectral properties. We also investigate the effects of noise and distortion and how incorporating these factors in
the design of necessary structuring elements allows for a more accurate representation of the desired targets and
therefore a more accurate detection. We also compare our method with various other common Target Detection
and Anomaly Detection techniques.

Keywords: Hyperspectral image processing, Mathematical morphology, Hit-or-Miss Transform, Template match-
ing, Object detection

1. INTRODUCTION

Object detection from airborne imagery is, and continues to be, a major challenge and active area of research
within the disciplines of signal and image processing. Remote sensing has become more and more prevalent and
remains an important source of information in determining land usage, earth mapping and other similar areas
of research. Depending on the system, remote sensing data can consist of high resolution RGB data, radar or
multispectral or hyperspectral images. The latter, while providing a great deal of useful information about the
scene it captures, introduces a vast quantity of data which must be handled and processed. The detection of
objects within this multi-source data can be challenging and general techniques that can be readily applied to
multiple sources are of great benefit.

A Multi-Dimensional Percentage Occupancy Hit-or-Miss Transform (MDPOHMT)! has been developed as
an extension of the traditional Mathematical Morphology (MM) operation the Hit-or-Miss Transform (HMT) to
multivariate images. This allows for targets to be detected in colour and multivariate images based on their size,
shape and colour or spectral information. Whilst the initial aim of this work was the extension to colour images,
the nature of the extension meant it would work well for higher dimensional images such as multi-spectral or
hyperspectral images given some other initial preprocessing stages. This work was explored previously? but was
only concerned with our method tested on a single dataset. In this paper we present a more in-depth evaluation
of this extension of the MDPOHMT, we also investigate its use for target detection in hyperspectral imagery
compared with other common target and anomaly detection techniques. We compare various techniques over
multiple datasets in order to assess the performance of the MDPOHMT as a target detection algorithm.

This paper is structured as follows, section 2 gives an overview of related work and background information
of various target and anomaly detection schemes, section 3 describes our MDPOHMT and various processing
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steps to improve its accuracy and efficiency when using hyperpsectral data. In section 4 we present our results
from these techniques on aerial hyperspectral data and sections 5 and 6 contain our conclusions and future work
respectively.

2. RELATED WORK

Generally object detection can be attributed to one of two main subcategories.? In target detection (TD), some
prior information abut the desired targets is known and is provided to the detection method. Conversely, in
an anomaly detection (AD) approaches, prior information is either unknown or not supplied to the detection
algorithm, objects are detected on the basis of being irregular when compared to their surroundings, a comparison
which can be performed globally or locally within an image. TD algorithms can be further categorised as
structured or unstructured,* where structured methods rely on the underlying assumption that any pixel is
made up of varying abundances of a set of constituent endmember spectra whereas unstructured approaches
describe pixels in terms of their probability distributions. AD applications generally depend on anomalous pixels
being outliers, differentiable from their surroundings as well as occurring with low probability.? Other methods
based on finding or estimating endmembers as well as spectral comparisons are often used within TD and AD.

2.1 Target detection

There are many target detection algorithms available in literature and it is an ever growing and improving area
of research, one widely used method is Constrained Energy Minimisation (CEM).® CEM is an FIR linear filter
based approach that seeks to minimise the output energy of the filter when some desired target spectra, d, is
input. The task of a CEM detector is to minimise the set of weighting coeflicients of the filter and due to this
underlying reliance on d, CEM is very susceptible to noise and can only detect pure forms of d. CEM can
sometimes struggle to pick out the desired spectra in a mixed pixel or to differentiate it from spectra that are
similar.” The Adaptive Cosine/Coherent Estimator (ACE)® is another method commonly used in hyperspectral
target detection.” 19 ACE works by computing the cosine of the angle between a zero-mean pixel and zero-mean
target spectra in a whitened space, or one which has covariance equal to the identity matrix. The ACE statistic
is a measure of the likelihood that this pixel contains a target of interest.

Other TD algorithms such as the Orthogonal Subspace Projection (OSP), Generalised Likelihood Ratio Test
(GLRT) and Adaptive Matched Subspace Detector (AMSD) require prior knowledge of the background spectra
which may not always be known in TD applications. These methods are intended to be investigated further in
the future however in this paper, the use of ACE and CEM are investigated.

2.2 Anomaly Detectors

The Reed-Xiaoli Detector (RXD)!! was developed by Reed and Yu in 1990 and is often considered the benchmark
algorithm for AD in hyperspectral data.®> The RXD can be thought of as the opposite of Principal Component
Analysis (PCA), where PCA decorrelates data and attempts to compress the most significant information into
few components. RXD seeks to seeks to find samples which occur with low probability in minor components.®
An issue with the RXD is that it cannot differentiate between small, low probability objects and noise. This,
however, does not reduce its ability to detect other outliers.

2.3 Endmember Finders

Another useful set of tools for object detection in hyperspectral imagery are endmember extraction, or unmix-
ing, algorithms. Some commonly used unmixing algorithms are the Sequential Maximum Angle Convex Cone
(SMACC),'? Automatic Target Generation Process (ATGP),'? Vertex Component Analysis (VCA)™ and Inde-
pendent Component Analysis - Endmember Extraction Algorithm (ICA-EEA).!5 Each of these methods seek
to find the endmember pixels that are combined in varying abundances to create the full image. Once these
endmembers have been found, further processing can determine if pixels are outliers with the latter three of these
methods are reviewed for unmixing in.'6



2.4 Spectral Comparison

In some cases, a direct comparison between image spectra and the desired spectra d is sufficient to determine
whether the pixel under test (PUT) contains d. Two common comparisons are the Spectral angle mapper
(SAM)'7 and Spectral information divergence (SID).!'® Both work in similar ways by drawing comparisons
between two N-dimensional pixel vectors x; and x; with SAM simply being the angle between the two. SID is a
measure of band-band variability between two vectors derived from the Kullback-Leibler information measure®
and uses the relative entropy between x; and x; to calculate their similarity. Combining both SAM and SID
using tan and sin functions has been shown to improve both measures.

2.5 Morphological Techniques

MM is a fundamental set of image processing techniques used for image analysis and classification first introduced
by Matheron?® and Serra.?! In the decades since its inception MM has undergone many successive extensions
from its initial restrictions to use in binary images.?? 23 The HMT is a common MM technique used for detecting
objects based on their size and shape information and does this by probing a query image with two structuring
elements (SEs). These SEs should be designed to detect objects by fulfilling both of the following conditions,
one SE, the foreground SE, must match the foreground and the other, the background SE, the complement
of background. In the binary case this is equivalent to basic set theory operations and can be implemented
using Erosions and Dilations.?* The erosion of an image, I, by an SE S (eg), is the locus of all points in
an image where S can fit entirely within the image foreground. The dilation of I by S (dg), is the locus of
all points where S touches, or intersects, the foreground. Alternatively, erosions can be thought of as being
minimum filters within the region bounded by S and conversely, dilations maximum filters. The HMT of I can
be defined in terms of an erosion of the foreground and a dilation of the background with a composite SE S,
with S = [Spg,SBG] where Spg N Spg = 9.

S T .

There have been various efforts to extend MM and the HMT to greyscale images and beyond. A unified theory
now exists for the greyscale HMT?® however, no such unified theory exists for a further colour or multivariate
extension and various proposed methods exist in literature.26-30

3. THE MDPOHMT AS A TARGET DETECTION ALGORITHM
3.1 Multivariate Mathematical Morphology using a MDPOHMT

The main difficulty in extending MM to multivariate images comes from the underlying need to define a complete
lattice®! or totally ordered set for morphological operations to be implemented. The idea of a total order
in a multivariate space is not intuitive, however, there are multiple methods®? to circumvent this. One of
these such methods, reduced ordering or r-ordering, is used in the MDPOHMT. R-ordering takes vectorial data
and reduces its dimension by measuring the dissimilarity from some reference which is a scalar. These scalar
valued representations of the vectorial data can then be ordered and morphological operations can be defined.
The measure used in the MDPOHMT is the Euclidean distance in the RGB colour space however many other
common distance measures and colour spaces can be used. The normalised Euclidean distance, az, between two
N-dimensional pixel vectors a and b is

5 /(b —a1)? + (ba —az)? + ...+ (by —an)?
d(a,b) = Wi

Using this Euclidean distance or another similar measure allows for the definition or r-ordering based erosion,
dilation and rank-order filters, which erosion and dilation are special cases of:

(2)

[es(D)](2) = mind(I(z + ), S(s)) (3)

ses



65(D))(x) = magd(I(x + 5),5(s)) (4)
[€5.4(D)](2) = Jth rank{d(I(z + 5), 5(s))} (5)

Using the distance-based definition of k' rank order filters from (5) and combining two of them, one in the
foreground and another in the background using a composite SE, S, similar to that used in (1), a definition for
the MDPOHMT of an image I can be reached,

[MDPOHMTs(I)](z) = {(1) i,ftfe?;f{sl:m”’(l))](x) < [Esso.k, (D)l(2) (©)

Where [£s;¢ k100, (D)](2) and [£s,¢ .k, (D)](7) are relaxed distance based erosion and dilation by Srg and
Spa respectively.

3.2 Dimensionality Reduction

Our proposed method combines the spatial and spectral/colour analysis provided by using an MDPOHMT with
various spatial and spectral dimensionality reduction (DR) techniques. By using DR, the efficiency of the process
is increased. As the HMT requires SEs in order to detect objects of interest, the SEs have to be projected into
the same reduced domain as the image. Principal component analysis (PCA)33 and its variants offer a method of
projecting auxiliary, or supplementary, variables which were not present during the calculation of the principal
components into the same reduced domain using a coefficient or projection matrix. This allows for the image
and associated SEs to be projected into the same reduced domain by the image’s principal component coefficient
matrix, @, for processing as show in equations (7) and (8):

X-x-Q (7)

Xsp = Xsg-Q (8)
Where X and Xgg are the image and SE respectively and X and Xgg are their projections.

While PCA is an optimal set of compression coefficients, it is not the most practical method as it is calculated
on a per-image basis, so part of the investigation was finding a set of coefficients for a set of images that was
representative enough to only be calculated for one, or multiple, image(s) from the set. By projecting each image
and the corresponding set of SEs using one set of representative coefficients, a more efficient process is defined.
The proposed method is shown graphically in Figure 1 while a flowchart of the proposed methods is shown in
Figure 2.
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Figure 1: Proposed dimensionality reduction scheme using PCA to project an image and any relevant SEs into the
same reduced-dimension domain.
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Figure 2: Flowchart of the proposed method for spectral dimensionality reduction for a set of images and their SEs.

PCA and its variants, along with many other forms of DR seek to exploit spectral redundancy. With
large hyperspectral images this is desirable to overcome the so called curse of dimensionality. However, spatial
redundancy is often exhibited in remote sensing applications and target/anomaly detection, wherein much of the
image is vegetative. Using spatial measures such as the Normalised Difference Vegetation Index, or NDVI, pixels
containing large amounts vegetation can identified. NDVTI is a simple and effective technique in determining the
amount of vegetation present in each pixel. The intensities at two wavelengths are used to obtain a ratio that
determines the NDVI, one in the red part of the spectrum, Aggp, where it is absorbed by vegetation and another
in the Near-IR, Anir, where it is reflected. using these wavelengths the NDVT is calculated as:

ANIR — ARED
NDVl = ———— 9
ANIR + ARED ©)

The values of the NDVI can be thresholded and used to mask out regions of interest in the image, reducing
the number of PUT to be queried using the MDPOHMT. Larger values indicate a higher likelihod that the pixel
contains vegetation. The stages of this NDVI segmentation are shown in Figure 3. NDVI coupled with spectral
DR results in speed increases on some images, as found in our previous study.? The DR techniques used also

has the added advantage of increasing the accuracy of target detection due to the targets high variance being
accentuated by PCA.

(d) (e) (f)
Figure 3: Stages of NDVI segmentation: a) Pseudo-colour image of the OP7 Site b) RED IMAGE c) NIR IMAGE
d) NDVI measurement of the scene e) Thresholded image specifying synthetic ROI f) Masked pseudo-colour image



3.3 Noise Robustness

Robustness to various noise and occlusion effects can be realised in multiple ways. Occlusion, dead pixel and
salt-and-pepper noise like effects can be negated using Percentage Occupancy®* in the MDPOHMT. This allows
for the SEs to have some disparity in their size and shape when compared with query regions within the image.
Atmospheric attenuation and noise can sometimes be observed in high altitude imagery and can adversely affect
template based object detection. Such noise can be modelled and their effects applied to the ground truth
spectra, such that this ground truth is altered in the same way as the scene upon capture. By combining this
noise robustness with the spatial robustness afforded by percentage occupancy the MDPOHMT can be made
more robust to noise.

4. EXPERIMENTAL RESULTS
4.1 Image Acquisition

Images from multiple sources have been used to validate the techniques described here. The first, provided by
BAE Systems, were acquired on the 18th May 2014 from an aerial platform flying at approximately 0.78km.
The platform used a hyperspectral sensor with a spectral range of roughly 400 - 1000nm. The second set of
images are taken from the MUULF Gulfport Dataset3® and include four 6 x 10m atmospheric calibration panels
as well as 60 other targets ranging from 0.5 x 0.5m sub-pixel targets to 3 x 3m targets. The sensor used was
the Compact Airborne Spectrographic Imager (CASI-1500) which has a spatial resolution of 1m with a spectral
range of roughly 360-1040nm.The images were captured from 1km and 2km altitudes on the 8th November 2010.
Examples from these datasets can be seen in Figures 1 and 2 respectively.
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Figure 4: Examples of data provided by BAE Systems - both of which show various objects in forested areas, a) Image
from the Moll Harris dataset, b) Image from the Operation 7 dataset.
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Figure 5: Image from the MUUFL Gulfport dataset.



4.2 MDPOHMT with added dimensionality reduction

Initially, the effects of the DR added to the MDPOHMT were tested using the images from the OP7 dataset
supplied by BAE systems. Each of these images showed the same scene with three atmospheric calibration
panels in the open along with other objects in the scene. The spectra of each of these panels was known and
appropriate SEs were designed and the MDPOHMT was used to detect the objects with PCA and NDVI applied
to the image. The resultant timings for each method are shown in Table 1 and in the bar chart in Figure 6. The
results of the algorithm and its added DR schemes can be seen in Figure 7.

Table 1: Comparison of execution time and effects of each DR method on the OP7 dataset.

Pre-processing Raw PCA NDVI  PCA + NDVI
Average Time (s) 124.1903  7.6360 2.2747 0.1383
No. Pixels retained | 16800000 480000 319410 12168

% of Total Pixels 100% 2.8571% 1.9013% 0.0730%
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Figure 6: Execution time of the MDPOHMT with the various DR techniques - the lower graph is magnified focussing

the bottom of the first.

As expected, analysing the image with the spectral DR afforded by PCA the run-time of the MDPOHMT is
greatly reduced in comparison to the raw image. Applying both NDVI and PCA further improves the run-time.
The effects of these DR techniques on the accuracy of the HMT are shown in Table 2 where each technique is
assessed in terms of their precision, based on the resulting true and false positives.

Table 2: Comparison of the precision accuracy and F1 Score of each HMT on the OP7 dataset.

Pre-processing | Raw PCA NDVI PCA + NDVI
True Positives 9 9 9 9

False Positives 679 11 23 5
Precision 0.0234 0.3529 0.2813 0.6429
Accuracy 0.0384 0.5769 0.3947 0.75

F1 Score 0.0458 0.6207 0.4390 0.7826

The precision of the HMT increases as the false positives in the original image are reduced. This reduction
can be attributed to the masking of the areas of interest through NDVT as well as the variance exaggeration and

projection of PCA.
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Figure 7: Results of the dimensionality reduction on the MDPOHMT a-c) Ground truth locations, d-f) Results of the

raw MDPOHMT, g-i) Results of the MDPOHMT with PCA applied, j-1) Results of the MDPOHMT with NDVI
applied, m-0) Results of the MDPOHMT with both PCA and NDVI applied.




4.3 Comparison between the MDPOHMT and other common TD/AD methods

The MDPOHMT was then applied with other common TD and AD methods, these were ACE, CEM, RXD,
SAM and SID and their performance on two datasets were recorded. These methods were chosen as they and
their variants are still widely used in similar target detection applications!'?:36-39

The first dataset these methods were tested on, the MUUFL Gulfport dataset (Figure 5), comprised of 3
images, each with 4 atmospheric calibration panels prominent within the scene as well as various other assorted
targets. These four calibration tiles were correctly detected within each of the images using each of the methods
and the results are collated in Table 3:

Table 3: Comparison of the pixel-wise target detection of each algorithm

Algorithm (gg\ljg%i) ACE CEM SAM  SID | RXD
Targets Detected 12 12 12 12 12 12
Targets Missed 0 0 0 0 0 0
Time taken (s) 0.2451 0.2152 0.1312 0.2308 3.7186 | 0.1791

The Moll-Harris dataset provided by BAE Systems (Figure 4a) consisted of an image with two targets in
a woodland clearing as well as three partially concealed vehicles. The targets in this image were objectively
more difficult to find than the ones attempted in the previous experiment as there were partially concealed and
camouflaged vehicles. Each method was tested in its ability to detect these five objects and the results are

displayed in Table 4:

Table 4: Comparison of the pixel-wise target detection of each algorithm

Algorithm (11:143\1;8_ I;l\é[i) ACE CEM SAM SID RXD
Targets Detected 5 4 3 4 5 4
Targets Missed 0 1 2 1 0 1
Time taken (s) 0.8478 0.7912 0.1332 0.3969 5.0502 | 0.6908

The MDPOHMT and SID based approaches successfully detected all five objects whilst the other methods
missed either one or two of the concealed vehicles. Of the two methods to detect all five objects SID had the
longer running time whilst the MDPOHMT performed much quicker. The CEM scheme was the quickest of all
of those tested but had the worst detection rate whilst ACE and SAM both worked well but failed to detect a
camouflaged object.

5. CONCLUSION

We have presented an extension of the morphological Hit-or-Miss transform the MDPOHMT for use in hyper-
spectral and other multivariate imagery.We have also investigated its use as a target detection algorithm and
compared it with other commonly used target and anoaly detection techniques. While the algorithm works well
when used on both raw and dimensionality reduced images, it requires several pure spectral pixels on target or
for mixed spectra containing the target to be known or estimated. This shortcoming is present in many of the
TD algorithms explored here.



6. FUTURE WORK

While both PCA and NDVI have been implemented to positive effect, other DR techniques may also prove
useful. Mutual information based band selection may also be used and also allows for any relevant SEs to remain
in the same domain as any images. Using the Euclidean distance as a disparity measure is related to the SAM
metric® and at its heart the MDPOHMT can be classed as an extended variant of a distance-based measure of
spectral comparison. Given this, other spectral comparisons such as SAM or SID may be incorporated into the
MDPOHMT in hyperspectral applications and may be a more relevant discrimination metric in these scenarios.
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